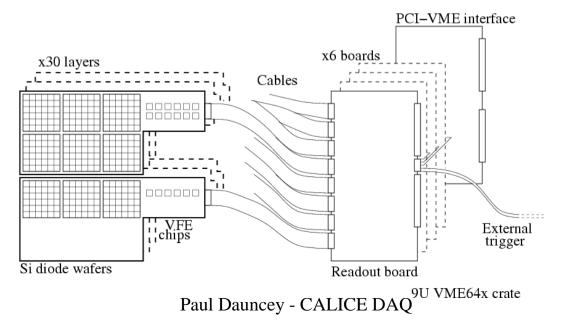
UK ECAL Hardware Status

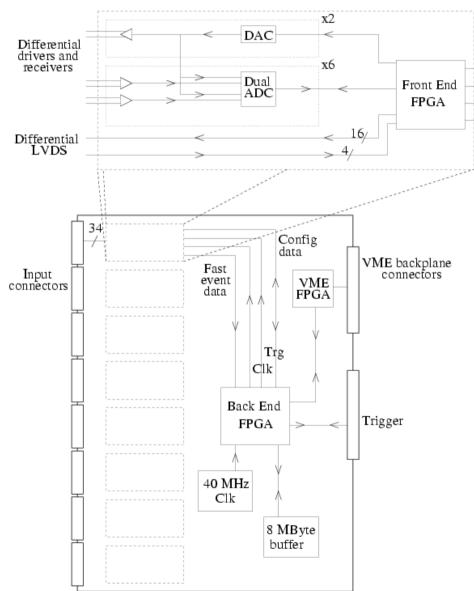
David Ward (for Paul Dauncey)

People


Work presented here due to:

- Rutherford Laboratory
 - Adam Baird, Rob Halsall, Ed Freeman
- Imperial College London
 - Osman Zorba, Paul Dauncey
- University College London
 - Matt Warren, Martin Postranecky
- Manchester University
 - Dave Mercer

Readout electronics overview


CALICE ECAL has 30 layers, 18×18 channels/layer, 9720 total

- Each gives analogue signal, 14-bit dynamic range
- Very-front-end (VFE) ASIC (Orsay) multiplexes 18 channels to one output line
- VFE-PCB handles up to 12 VFEs (216 channels)
- Cables from VFE-PCBs go directly to UK VME readout boards, called Calice Ecal Readout Cards (CERCs)

CERC overview

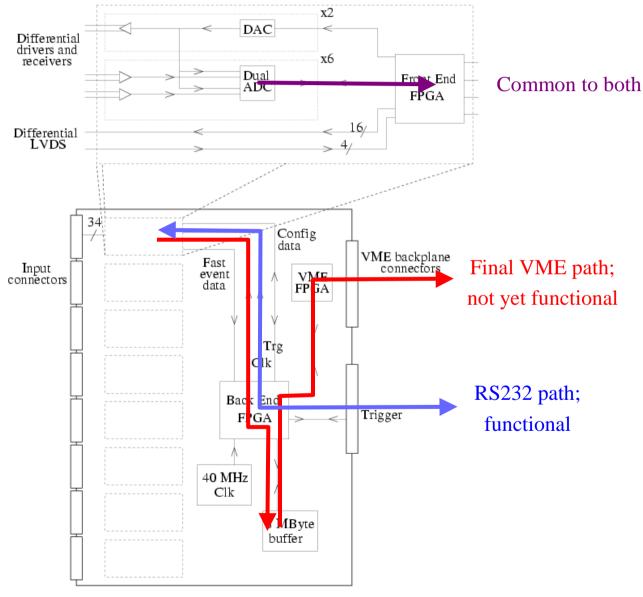
- Eight Front End (FE) FPGAs control all signals to front end electronics via front panel input connectors
- Back End (BE) FPGA gathers and buffers all event data from FE and provides interface to VME
- Trigger logic in BE for timing and backplane distribution; only active in one board
- Each input is one full or two half-full VFE-PCBs; need 45 inputs = 6 CERCs

CERC features

- Based on CMS silicon tracker readout (FED)
 - Will "borrow" a lot of firmware from them
 - Unfortunately not yet as well-developed as hoped
- Dual 16-bit ADCs and 16-bit DAC
 - DAC fed back for internal as well as front end calibration
 - ADC 500kHz; takes $\sim 80 \mu s$ to read and digitise event data from VFE-PCB
- No data reduction in readout board
 - ECAL event size: 3.5 kBytes per board, 20 kBytes total per event
- On-board buffer memory; 8 MBytes
 - No buffering available in ECAL front end; receive data for every trigger
 - Memory allows up to $\sim 2k$ event buffer on readout board during beam spill
 - VME readout speed ~20 MBytes/s; several seconds readout after spill
- Large amount of unused I/O from BE FPGA to backplane
 - Will implement trigger logic and control/readout interface to VME in BE

CERC status

- Prototype design completed last summer
- Two prototype boards fabricated last year
 - Arrived on November 21 at Rutherford Laboratory
- Currently under stand-alone tests in the UK
 - Aim to test with a VFE-PCB in the UK very soon
 - Move UK hardware to Paris (Ecole Polytechnique) for cosmic tests with fully populated VFE-PCB with Si wafers in Feburary



Paul Dauncey - CALICE DAQ

Test setup

- Final path for data has several complex steps
 - FE digitises ADC data for each trigger
 - Automatically transferred to 8MByte memory
 - Memory read from VME when bandwidth available
- Needs data transfer, memory control and VME interface
 - BE FPGA firmware not yet functional
 - Memory components delayed in delivery; not yet mounted on CERCs
 - Aiming for end of March for all this to be working
- Backup for VFE tests
 - Implement simple RS232 interface from PC to BE and hence to FEs
 - FE digitises ADC data and stores in FIFO in FE
 - RS232 reads FIFO one word at a time directly to PC
 - 8MByte memories bypassed, must read each event before next trigger
 - Rate is slow ~1Hz for events; sufficient for cosmics

Test setup data paths

Test results

• RS232 path complete

- Read and write configuration data to RAMs in FEs
- Read and write fake event to RAMs in FEs
- Read back fake event via FIFO on trigger
- Tested for several hours continuous running; no errors seen
- Trigger input working
 - Can fire trigger from BE with RS232 command
 - Can send trigger as LVDS signal on spare backplane pins to BE
 - Both functional; allows external cosmic trigger for VFE tests
- ADC readout and DAC control still under development
 - ADC can be read, DAC can be set
 - DAC can be looped back to ADC internally and through front panel
 - All control at present only via Xilinx Chipscope tool
 - No way to take multiple readings; no noise measurement or DAC calibration
 - Connection to RS232 I/O path still needs to be implemented

Known CERC problems

- FPGAs do not always load correctly on CERC power-up
 - Sometimes need to press reset button several times
 - Firmware stored on CompactFlash card; replacing this also works
 - Thought to be due to power-up boot timing sequence
 - Can be adjusted but depends on firmware so wait until semi-final code ready
- Mismatch of DAC output op-amp differential range and ADC input op-amp differential range
 - DAC differential output only single polarity
 - Can only cover top half of ADC range
 - Problem in DAQ op-amp, not ADC, so real signals should be unaffected
 - Unclear if DAQ will have problem with VFE-PCB expected differential range? Wait until we get a VFE-PCB to find out!
- Not yet clear if these can be fixed or require redesign

Future plans

- VFE tests in Paris in February
 - Essential test of prototypes before moving to production
- Possible AHCAL test in March
 - Need more information on what this entails; number of channels, interface specification to VFE-PCB equivalent, etc.
- Finalise redesign by end March
 - Assuming tests successful
- Relayout and fabricated nine production CERCs in April-May
 - Simple fix for known problems may be possible
 - If so, may not relayout; save a month
 - Only have components for nine boards; need to know early if more wanted
 - Also need the money; UK has no money for extra CERCs!
- Full ECAL system tests from July onwards
 - On schedule for DESY ECAL beam test in Oct/Nov