Cluster finding in CALICE calorimeters

Chris Ainsley University of Cambridge, UK

<ainsley@hep.phy.cam.ac.uk>

General CALICE meeting: simulation/reconstruction session 28–29 June 2004, CERN, Switzerland

Motivation

- Desire for excellent jet energy resolution at future LC
 - ⇒ calorimeter needs to be highly granular to resolve individual particles within jets;
 - ⇒ calorimeter will have tracker-like behaviour: unprecedented;
 - \Rightarrow novel approach to calorimeter clustering required.
- Aim to produce a flexible clustering algorithm, independent of ultimate detector configuration and not tied to a specific MC program.
- Develop within an LCIO-compatible framework
 - ⇒ direct comparisons with alternative algorithms can be made straightforwardly.

Order of service

- Tracker-like clustering algorithm in outline.
- Generalisation of the full detector geometry.
- Application to single-particle cluster reconstruction.
- Application to multi-particle cluster reconstruction:
 - Z event at 91 GeV (W-Si Ecal, Fe-RPC Hcal);
 - W⁺W⁻ event at 800 GeV (W-Si Ecal, Fe-RPC Hcal).
- Summary and outlook.

Tracker-like clustering algorithm in outline

- Sum energy deposits within each cell.
- Retain cells with total hit energy above some threshold (¹/₃ MIP; adjustable).
- Form clusters by tracking closely related hits layerby-layer through calorimeters:
 - for a given hit *j* in a given layer *l*, minimize the angle β w.r.t all hits *k* in layer *l*-1;
 - if $\beta < \beta_{\max}$ for minimum β , assign hit *j* to same cluster as hit *k* which yields minimum;
 - if not, repeat with all hits in layer *l*-2, then, if necessary, layer *l*-3, etc.;
 - after iterating over all hits *j*, seed new clusters with those still unassigned;
 - calculate centre-of-energy of each cluster in layer *l*;
 - assign a direction cosine to each hit along the line joining its clusters' seed (or {0,0,0} if it's a seed) to its clusters' centre-of-energy in layer *l*;
 - propagate layer-by-layer through Ecal, then Hcal;
 - retrospectively match any backward-spiralling track-like cluster fragments with the forwardpropagating cluster fragments to which they correspond using directional and proximity information at the apex of the track.

Geometry generalisation (1)

Geometry generalisation (3)

- Clustering algorithm works as described earlier, but with layers replaced by pseudolayers
 - \Rightarrow pseudolayer index changes smoothly;
 - ⇒ clusters are tracked with continuity across stave boundaries.
- Pseudolayers/pseudostaves are defined automatically by the intersection of the real, physical layers
 - \Rightarrow only need distances of layers from {0,0,0} and their angles w.r.t. each other to construct these;
 - ⇒ idea applies to ANY detector design comprising an *n*-fold rotationally symmetric barrel closed by a pair of endcaps!

General CALICE meeting 28–29 June 2004, CERN, Switzerland

91 GeV Z event: Full detector

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 9

10

11

91 GeV Z event: Performance

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

- 15 highest energy reconstructed and true clusters plotted.
- Reconstructed and true clusters tend to have a 1:1 correspondence.
- Averaged over 100 Z events at 91 GeV:
 87.7 ± 0.5 % of event energy maps 1:1
 - from true onto reconstructed clusters;
- -97.0 ± 0.3 % of event energy maps 1:1 from reconstructed onto true clusters.

General CALICE meeting 28–29 June 2004, CERN, Switzerland

General CALICE meeting 28–29 June 2004, CERN, Switzerland

General CALICE meeting 28–29 June 2004, CERN, Switzerland

15

800 GeV W⁺W⁺ event: Performance

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

- 15 highest energy reconstructed and true clusters plotted.
- Reconstructed and true clusters tend to have a 1:1 correspondence.
- Averaged over 100 W⁺W⁻ events at 800 GeV:
- 83.3 ± 0.5 % of event energy maps 1:1 from true onto reconstructed clusters;
- 80.2 \pm 1.0 % of event energy maps 1:1 from reconstructed onto true clusters.

General CALICE meeting 28–29 June 2004, CERN, Switzerland

Summary & Outlook

- R&D on clustering algorithm for calorimeters at a future LC in progress.
- Approach mixes tracking and clustering aspects to utilize the high granularity of the calorimeter cells.
- Starts from calorimeter hits and builds up clusters a "bottom up" approach (cf. "top down" approach of G. Mavromanolakis).
- Can be applied to any likely detector configuration
 - \Rightarrow straightforward to try out alternative geometries.
- Works well for single-particles events.
- Good performance for 91 GeV Z events.
- Encouraging signs for 800 GeV W⁺W⁻ events.
- Runs in the LCIO (v.1.0) framework: hits collection \rightarrow clusters collection (awaiting next version to make full use of cluster object methods)

 \Rightarrow straightforward to try out alternative algorithms.