Comparisons of hadronic shower models

G.Mavromanolakis, University of Cambridge

Outline

- ► General
- ► Brief description
- ► Results
- ► Conclusions

040628_

CALICE collaboration meeting, CERN

General

simulation studies focused on CALICE ECAL-HCAL prototypes, to support and guide the testbeam program

▶ . survey of hadronic models in **GEANT3** and **GEANT4**

	GEANT3.21	:	GHEISHA FLUKA + GHEISHA FLUKA + MICAP	:	GHEISHA SLAC GCALOR
⊳	GEANT4.6.1***		LHEP LHEP-BERT LHEP-BIC	:	QGSP QGSP-BERT QGSP-BIC

- : LHEP-GN : QGSC
- : LHEP-HP : FTFP

+ FLUKA under GEANT4 (FLUGG) thanks to N.K.Watson

*** with hadronic physics list PACK 2.5

model tag		brief description
G3-GHEISHA	:	GHEISHA
G3-FLUKA+GH	:	FLUKA, for neutrons with E < 20 MeV GHEISHA
G3-FLUKA+MI	:	FLUKA, for neutrons with E < 20 MeV MICAP
G3-GH SLAC	:	GHEISHA with some bug fixes from SLAC
G3-GCALOR	:	E< 3 GeV Bertini cascade, 3 $< E<$ 10 GeV hybrid Bertini, FLUKA, $E>$ 10 GeV FLUKA for neutrons with $E<$ 20 MeV MICAP
G4-LHEP	:	GHEISHA ported from GEANT3
G4-LHEP-BERT	:	E < 3 GeV Bertini cascade, $E > 3$ GeV GHEISHA
G4-LHEP-BIC	:	E< 3 GeV Binary cascade, $E>$ 3 GeV GHEISHA
G4-LHEP-GN	:	GHEISHA + gamma nuclear processes
G4-LHEP-HP	:	as G4-LHEP, for neutrons with $E<$ 20 MeV use evaluated cross-section data
G4-QGSP	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-QGSP-BERT	:	E< 3 GeV Bertini cascade, 3 $< E<$ 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-QGSP-BIC	:	E< 3 GeV Binary cascade, 3 $< E<$ 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-FTFP	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model with fragmentation ala FRITJOF
G4-QGSC	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-FLUGG	:	a FLUKA interface to GEANT4 geometry format, preliminary, thanks to N.K.Watson

-

FLUKA under GEANT4 – N.K.Watson

(update since LCWS04, Paris)

: higher activity in odd/even layers in prototype genuine effect also seen in GEANT4, not an artefact of FLUKA

- : individual energy deposits from FLUKA are material type and (x,y,z)
- ▶.
- : use detailed knowledge of geometry of active regions to:
 - sum energy deposits per event in each cell
 - allow direct comparison with G3/G4 models
 - "reverse look-up" CGA routine (x,y,z)→cell/layer index would help especially when numbering schemes change
- : differences seen in GEANT3-4 vs G3-FLUKA vs G4+FLUKA(FLUGG), not understood for electrons in particular, under investigation

FLUKA under GEANT4 – N.K.Watson

(update since LCWS04, Paris)

: know that FLUKA models energy loss as either

▷ at a point: elastic or inelastic recoils, low energy neutron kerma, etc.

- ▷ or distibuted along a step: ionisation by charged particles
- : for comparison with G3/G4, "old" FLUKA energy deposition algorithm used which assigns ionisation energy at middle of step
 - \triangleright inaccurate when steps are \sim region size
 - FLUKA authors strongly recommend energy deposition distributed along steps
- ▶.

▶ .

: N.K.Watson will follow up and ensure we can use FLUKA predictions for test beam studies

Brief description

run under Mokka(v2.2) and Brahms(v3.01) frameworks (GEANT4.6.1 and GEANT3.21 based, respectively)

study with W/Si ECAL+Fe/Scint or RPC HCAL CALICE prototypes porting detector geometry from GEANT4 to GEANT3

cutoffs : GEANT3 energy cutoffs EM = 10 keV, HAD = 0.1 MeV

: GEANT4 range cutoff = 5 μ m

: ECAL, HCAL cellsize 1×1 cm², threshold = 0.5 mip

samples of 10000 events, results normalised to G4-LHEP case, shown \pm 10% and \pm 20% bands wrt 1 to guide the eye

- ECAL 30 layers × 50 cm × 38 cm interleaved with 0.5 mm Si pads ▷ W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer ▷ readout by 1 cm² cells
- **HCAL** 40 layers \times 100 cm \times 100 cm interleaved with 6.5 mm scintillator or 1.2 mm RPCgas (digital HCAL)

> Fe absorber, 18 mm thick per layer

▶ readout by 1 cm² cells

Difficulties

▶ .

▶.

- : define identical geometries in GEANT3-4. OK can be done \checkmark
- : define identical materials in GEANT3-4. OK can be done \checkmark
- : physics control parameters,
 - ▷ energy cutoff for GEANT3. Can be different for different media
 - ▷ range cutoff for GEANT4. Same for all media

material	5 µm	50 µm	0.5 mm	5 mm
tungsten	53	220	1219	12952
iron	39	150	727	6112
silicium	7	80	335	2044
polystyrene	3	58	226	1189
RPC gas	1	1	1	31

energy cutoffs (in keV) for different range cutoff

- : Tune control parameters between GEANT3 and 4 to have what ?
 - ▷ identical energy cutoffs per material ?
 - ⊳ or identical mip peak ?
 - or identical response to electrons ?
- : Fix mip peak seems the natural choice

ECAL+HCAL scint "response" vs model, π^- 10 GeV

N cells hit

E deposited

b different models predict different calorimeter response

- **> HCAL more sensitive than ECAL**
- **> EM discrepancies between frameworks seen by ECAL**

ECAL+HCAL scint "response" vs model, π^- 1 GeV

N cells hit

E deposited

same pattern as at 10 GeV case, even more pronounced
ECAL standalone may have some discriminating power

shower transverse width vs model

weighted by Edep per cell

- \triangleright models agree within ±5% for mean energy deposited/cell
- different calorimeter response per model is largely because of predicting different shower size

ECAL+HCAL rpc "response" vs model, π^- 10 GeV

N cells hit

E deposited

> HCAL rpc less sensitive to neutrons than HCAL scint

FLUGG included in the list

> EM discrepancies between frameworks seen by ECAL

HCAL rpc – HCAL scint

N cells hit

shower width

> HCAL rpc less sensitive to low energy neutrons than HCAL scint

fluka based models in more detail

discrepancies between frameworks

N cells hit

E deposited

GEANT3 14% higher than GEANT4 FLUGG 30% higher than GEANT4

GEANT3 14% higher than GEANT4 FLUGG 24% higher than GEANT4

agreement between frameworks

E deposited

Conclusions

▶.

- : GHEISHA based models are in relative "agreement"
- : FLUKA based models are definitely different
- : low energy neutrons are important especially for the HCAL scint (e.g. compare G3-FLUKA+GH, G3-FLUKA+MI, G3-GCALOR or G4-LHEP with G4-LHEP-HP)
- : intranuclear cascade models are also important (e.g. compare Bertini or Binary cascade models with the rest)
- : HCAL scint more sensitive than HCAL rpc
- : ECAL standalone may have some discriminating power at low energies
- : different models predict different calorimeter response

> mainly as a consequence of predicting different shower size thus, different models predict different optimum calorimeter granularity