Towards a clustering algorithm for CALICE

Chris Ainsley University of Cambridge

<ainsley@hep.phy.cam.ac.uk>

Order of service

- Layer-by-layer approach to clustering.
- Application to a generalised calorimeter.
- Reconstructed event gallery for two close-by particles.
- How to quantify the two-particle separation "quality" and use it to optimise clustering cuts.
- Quality studies for nearby $\pi^+\gamma$, π^+n , $\pi^+\pi^+$ and nn.
- Quality dependence on hadronic shower model.
- Summary.

Layer-by-layer clustering: the algorithm

- Form clusters by tracking closely-related hits (> 1/3 mip) *layer-by-layer* through calorimeter:
 - for a given hit j in a given layer l, minimize the distance d w.r.t all hits k in layer l-1;
 - if d < dist_max_ecal (Ecal) or
 dist_max_hcal (Hcal) for minimum d,
 assign hit j to same cluster as hit k which
 yields minimum;
 - if not, repeat with all hits in layer *l*-2, then, if necessary, layer *l*-3, etc., right through to first layer of Ecal;
 - after iterating over all hits *j*, seed new clusters with those still unassigned;
 - if in Ecal, calculate weighted centre of each cluster's hits in layer *l* (weight by energy (analogue) or density (digital)) and assign a direction cosine to each hit along the line joining its cluster's centre in the seed layer (or (0,0,0) if it's a seed) to its cluster's centre in layer *l*;
 - if in Hcal, assign a direction cosine to each hit along the line from the hit to which each is linked (or (0,0,0) if it's a seed) to the hit itself;
 - try to recover backward-spiralling track-like, and low multiplicity 'halo', cluster fragments

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 3

Layer-by-layer clustering in a generalised detector

- Approach requires layer index to vary smoothly: e.g. in CALICE, index changes abruptly
 - at stave boundaries in Ecal barrel (layers overlap at 45°);
 - at barrel/endcap boundaries in Ecal & Hcal (layers overlap at 90°).
- Scheme developed (see CERN, Durham talks) to overcome problem; extended to apply to any arbitrary *n*-fold rotationally-symmetric, layered calorimeter.
- Achieved by replacing layer index with *pseudolayer* index in regions where layer index discontinuities occur.
- Same-pseudolayer indexed hits defined by closed shells of *n*-polygonal prisms (e.g. CALICE: *n* = 8 ⇒ octagonal prisms) coaxial with *z*-axis.
- Locations/orientations of shells automatically set by locations/orientations of real, physical, sensitive layers.
- Just takes *n* and layer-spacings in barrel and endcaps as input.

How the generalised detector shapes up

- Solid blue lines aligned along real, physical, sensitive layers.
- Dot-dashed magenta lines bound shell containing hits with same *pseudolayer* index, *l*.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 5

5 GeV $\pi^+\gamma$ event at 5 cm separation

- Energy maps mostly $black \leftrightarrow black(\gamma)$ and $red \leftrightarrow red(\pi^+)$.
- Quality = 57.0 + 37.5 = 94 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 6

5 GeV π^+ n event at 5 cm separation

- Energy maps mostly $black \leftrightarrow black (\pi+)$ and $red \leftrightarrow red$ (n).
- Quality = 46.3 + 40.1 = 86 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

5 GeV $\pi^+\pi^+$ event at 5 cm separation

- Energy maps mostly $black \leftrightarrow black$ and $red \leftrightarrow red$.
- Quality = 63.0 + 26.9 = 90 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 5 GeV nn event at 5 cm separation

- Energy maps mostly $black \leftrightarrow red$ and $red \leftrightarrow black$.
- Quality = 39.5 + 38.6 = 78 %.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

Two-particle separation quality: definition

- Need to grade performance of clustering algorithm (in absence of full particle-flow algorithm).
- Want to optimise both:
 - *efficiency* how closely true particle clusters correspond to reconstructed clusters; and
 - *purity* how closely reconstructed clusters correspond to true particle clusters.
- Propose a figure of merit:

Quality = fraction of event energy that maps in a 1:1 ratio between reconstructed and true clusters.

- Combines efficiency and purity into a single, useful measure.
- For two equal-energy particles, expect
 - no clustering (*i.e.* "hit" = reconstructed cluster):
 ⇒ energy in true clusters divided between many reconstructed clusters;
 - \Rightarrow quality \rightarrow 0;
 - over-exaggerated clustering (i.e. "event" = reconstructed cluster):
 - \Rightarrow energy in single reconstructed cluster divided between two (equal-energy) true clusters;
 - \Rightarrow quality \rightarrow 50 %;
 - optimal clustering:
 - \Rightarrow lies somewhere in between; where?
 - \Rightarrow quality = ?
- Demonstrate principle by varying the dist_max_ecal and dist_max_hcal cuts.
- Energy calibrated (D09 detector) according to: $E = \alpha [(E_{\text{Ecal: 1-30}} + 3E_{\text{Ecal: 31-40}})/E_{\text{mip}} + 20N_{\text{Hcal}}] \text{ GeV}.$

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

Schematic two-particle reconstruction quality (equal energies)

5 GeV two-particle quality vs clustering cuts

100

90

80

.60F

40

30

20

10

100_c

90

80

_ి70⊢

quality 00

40

∺30

20

10

0E

11

00 05 01

- Ecal quality peaks/plateaus (all particles/ separations) around dist_max_ecal = 2 cm.
- Physically reasonable (1×1 cm² cells). Fix it. ٠

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

Ecal + Hcal

- Hcal quality peaks/plateaus (all particles/ • separations) around dist_max_hcal = 3 cm.
- Again, physically reasonable. Fix this too.

5 GeV two-particle quality vs separation

- Goal: to distinguish charged clusters from neutral clusters in calorimeters.
- Separation of $\pi^+\gamma$ and π^+n very important; that of $\pi^+\pi^+$ and nn less so (but still interesting).
- Quality improves with separation (naturally).
- π⁺γ separation at 5 GeV seems to be pretty good; π⁺n is somewhat tougher (n by itself is tricky – dashed magenta line).
- Do things change much with energy / incident angle / other pairs of particles / pad-size / hadronic shower model...?

dist_	_max_	ecal = 2.0 cm (fixed);
dist_	_max_	hcal = 3.0 cm (fixed).

$\pi^+\pi^+$ quality vs hadronic shower model

- Survey by G. Mavromanolakis (see CERN, Durham talks) \Rightarrow different hadronic shower models give significant variations in predicted shower radius (≈ 35 % for 10 GeV π^+).
- Looked at dependence of quality on model for two 5 GeV π^+ separated by 5 cm:
 - LHEP $85.5 \pm 0.4 \%$ QGSP_BIC $84.9 \pm 0.3 \%$ LHEP_BERT $81.8 \pm 0.4 \%$ LCPhys $81.8 \pm 0.4 \%$.

- Quality decreases with increasing shower radius (as expected).
- Similar conclusions found with other separations; also for single π^+ .
- Hadronic shower model impacts on pattern recognition predictions; ultimately significant for detector design.

Summary & outlook

- R&D on clustering algorithm for CALICE on-going.
- Approach utilizes the high granularity of the calorimeter cells to "*track*" clusters (pseudo)layer-by-(pseudo)layer.
- Written in C++; LCIO (v1.3) compliant.
- Pseudolayer concept \Rightarrow flexibility to cope with alternative layered geometries without having to recode algorithm itself.
- Introduced quality gauge to assess performance of algorithm w.r.t. charged/neutral cluster separation.
- Using it
 - to guide refinements to algorithm and optimise clustering cuts.
 - to compare relative merits of different detector layouts.
- If considered helpful, can aim to make code publicly available within ~6 months.

The end

That's all folks...

Cluster-tracking between pseudolayers

From the pseudobarrel

From the pseudoendcap

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

91 GeV $Z \rightarrow u, d, s$ jets event

- Reconstruction in full detector (Si/W Ecal & RPC Hcal; 1×1 cm² cells).
- dist_max_ecal = 2.0 cm; dist_max_hcal = 3.0 cm.
- Good 1:1 correspondence between reconstructed and true clusters (5 highest energy clusters shown).

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 17

Calibration of π^+ , γ and n

