TB Review: DAQ

Paul Dauncey

Imperial College London

For Imperial, RAL, UCL

Scope of DAQ

- Short term view, i.e. next 18 months
 - DESY beam tests, ECAL only, AHCAL only
 - DESY ECAL/AHCAL integration
 - FNAL ECAL/AHCAL beam tests
 - With tail catcher as appropriate
- Systems included
 - ECAL: ~10k channels
 - AHCAL: ~8k channels
 - Tail catcher: ~300 channels
 - DESY beam line data; tracking TDC: 16 channels
 - FNAL beam line data; tracking, PID, trigger, etc: ? channels

2

- Ignor DHCAL for now
 - See end of talk

DAQ requirements

- Need ~10⁶ events for each of ~10² configurations
 - Total sample of $\sim 10^8$ events
- Within reasonable time, take as ~1 month continuous running
 - 1 month $\sim 10^7$ seconds so need 10Hz event rate
 - Set requirement at 100Hz as can never run continuously
- For spill structure of e.g. 10% duty factor
 - Need 1kHz event rate during spill
 - FNAL might be as bad as 1 spill of 0.6sec/min = 1%; would need 10kHz
 - 100Hz is averaged rate
- No threshold suppression online
 - Want to study pedestals, etc, in detail
 - ECAL, AHCAL both ~10k channels \times 16 bit ADCs = 20kBytes/event
 - Take total event size as 50kBytes; total sample = 5TBytes
 - Need averaged data rate of 5MBytes/s
 - Run duration will be limited by file size; 2GBytes takes 400 secs ~ 7 minutes

DAQ recent performance

- Current DAQ system is "prototype"
 - Wanted real experience before purchasing final equipment
- Cosmics at Ecole Polytechnique
 - ~2 weeks over Christmas/New Year
 - Ran effectively stand-alone
 - Took ~1M events, ~20GBytes
 - Will allow single pad calibration to < 2%
- Electron beam data at DESY
 - Last ~4 weeks
 - Took ~25M events, ~250GBytes
 - Different energies and incident angles
 - Drift chambers give tracking information
- Now think we know what we want...

DAQ description

- Mainly based on CRC VME board
 - Modified from CMS silicon tracker readout board
 - Firmware in FE, BE, VME

DAQ components

- More than just CRCs; consists of
 - Hardware:
 - Cables, VME boards (CRCs), VME crates, VME-PCI interfaces, PCs and local disk, trigger inputs (? if considered part of DAQ)
 - Firmware: within CRCs
 - FE, BE and BE-Trg, VME designs
 - Software:
 - Trigger handling, spill detection, CRC readout, slow data readout, data formatting, data transport, online monitoring, book-keeping
- Different components at different stages of development

DAQ hardware layout

- DAQ CPU
 - Trigger/spill handling
 - VME and slow access
 - Data formatting
 - Send data via dedicated link to offline CPU
 - Redundant copy to local disk?

- HCAL PC
 - Partitioning

- Offline CPU
 - Write to disk array
 - Send to permanent storage
 - Online monitoring
 - Book-keeping

DAQ trigger distribution

- Trigger information sent to one CRC
- Trigger distributed on custom backplane to other CRCs in ECAL
- AHCAL/TC crate similar; cable connecting backplanes
 - More latency; keep short

DAQ hardware status

- Cables: ECAL needs 60, AHCAL needs 80, tail catcher needs 4
 - ECAL: 70 purchased (DESY and RAL); 5m not 3m!
 - AHCAL, tail catcher: need to decide on length; this summer(?)
- CRCs: ECAL needs 6 (7 if trigger in separate CRC), AHCAL needs 5, tail catcher needs 1
 - ECAL: 2 prototype Nov 2003, 2 preproduction Nov 2004, 7 production Feb 2005; preproduction identical to production
 - AHCAL and tail catcher: 7 about to be ordered from RAL, due Jun 2005
- VME crates: ECAL needs 1, AHCAL and tailcatcher need 1
 - All purchased
- VME-PCI interfaces; SBS620, one per VME crate
 - ECAL: 1 purchased but old PCI format: will buy two more in Mar 2005
 - AHCAL and tail catcher: 2 purchased (one for other use)
- PCs: Need two DAQ, one AHCAL, and disk array
- Will buy DAQ ones in Mar 2005, AHCAL already purchased 25 Feb 2005 Paul Dauncey

DAQ firmware status

- FE: completely new design
 - Some FPGAs die: SER003/FE0 within minutes, SER004/FE1 after hours but always revive after reset
 - Try to double clock speed used for programmable HOLD offset count
- BE: mostly from CMS but some modifications
 - Expand use of QDR memory from 2MBytes to 8 Mbytes
 - Expand use of control FIFOs from 512 events to 2k events; needs reduction in amount of FIFO data stored
 - Fix bug causing occasional trigger loss
 - Issues to stay in synch with CMS design and tools
- BE-Trg: completely new design
 - Need trigger data to be buffered (in QDR): CRC for trigger only?
 - More trigger functionality needs to be added
- VME: same firmware as CMS
 - No interrupts: need to poll for trigger and spill change

DAQ software status

- Trigger handling, spill detection
 - Within CRC using BE-Trg; no interrupts so polling
 - Use external interrupt generator? HAL VME software does not support them
- CRC readout
 - Good shape, well tested; needs some tuning; event rate limit
- Data formatting
 - Good shape, well tested; will need new formats for new data at FNAL
- Data transport
 - Well tested for file I/O, some tests with socket I/O done, more needed
- Online monitoring
 - Very basic, lots of room for new plots
- Slow data readout (see later)
- Book-keeping
 - Effectively nothing in place

Development schedule

- Continuous running until yesterday (!)
 - No DAQ improvements during this period
- Mar/Apr/May: major upgrades
 - Final PCs, PCI cards, etc, purchased and shipped to DESY
 - Remaining ECAL CRCs tested and shipped to DESY
- Tests in Mar/Apr/May
 - Commission and test hardware (CRCs only arrived 1 month before cosmics)
 - ECAL full system tests; event readout speed tuning
 - ECAL/ACHAL crate integration tests; hope for no firmware changes
 - Slow data readout tests
 - Firmware development
 - Software development, particularly data transport and online monitoring
- Second DESY run, Jun/Jul
 - Complete(?) ECAL

Slow DAQ

- Separate developments of slow control and readout
 - ECAL: movable stage
 - ECAL: VFE power supplies and temperatures
 - CRC: power supplies and temperatures
 - AHCAL: power supplies, LEDs and temperatures
- Current plan
 - Only CRC slow data read out to data files at present
 - Movable stage data only within stage control PC
 - Each will have dedicated control/readout PC
 - Software independently developed, any format internally
 - All passive (read-only) from DAQ side
 - Settings only changed from dedicated PC
 - DAQ data contains uniform access to all slow data
 - Communication via sockets

Event rate status

- DESY beam test (using faster AHCAL PC!)
 - Event rate ~ 40Hz ~ 40% of requirement
 - Data rate ~ 400kBytes/s ~ 8% of requirement
- BUT
 - Not CPU limited (factor of 2 faster than with ECAL, but CPU ratio > 5)
 - Lots of slow "configuration" path data (~1kByte/event) read out
- Other measure
 - One board, only QDR data using BDT ~ 330Hz ~ 1.6MBytes/s
 - Six boards ~ 50Hz ~ 50% of requirement
- Issues for study
 - Gains from code streamlining, inlining, compiler optimisation, faster PC
 - VME rate for two PCI cards in dual processor PC with threading

FNAL spill structure

- Original numbers were 0.6 sec spill/min; 1% duty cycle
 - Maximum rate ~ 3kHz to get ~ 2k events/spill ~ 30Hz
- Lengthening spills ~ 5 sec?
 - Only reduces maximum rate needed during spill to ~ 300Hz
 - Average event rate unchanged
 - (Useful for DHCAL as RPCs will be rate limited)
- Now hear only have one spill per two mins!
 - Average rate down to ~ 16Hz
 - Would need to be very organised to average 10Hz overall
- At DESY beam test
 - DAQ average rate ~40Hz with good beam
 - Average ~19Hz overall during last week of running
 - Average ~9Hz overall during previous week

Trigger latency

- Trigger latency remains a worry
 - Must send sample-and-hold to VFE boards at peak of shaped signal
 - Peaking time is ~190ns in ECAL, ~160ns in AHCAL
- Estimated delays at DESY beam test
 - NIM-LVDS module and 1m cable ~15ns
 - Trigger section on CRC board ~20ns
 - Trigger input from backplane to minimum HOLD edge ~40ns
 - Cable and level converter on VFE PCB ~40ns
 - Trigger scintillators, discriminators logic ~15ns Average ADC count above pedestal vs. hold value
 - Software offset ~ 60ns
- Future uncertainties
 - AHCAL cables; 10m ~ 25ns longer than ECAL
 - Trigger signal timing at FNAL

DHCAL issues

- Many uncertainties here in DAQ hardware and software
 - Also need to make sure trigger and timing compatible with rest of CALICE
 - Move tailcatcher board into ECAL crate (beware for cable lengths)
- Basic statement
 - If data can be read into Linux PC between spills...
 - ... DAQ can pull it out and merge with rest of event
- Clearly easiest if similar to AHCAL
 - VME system; two (?) crates with two PCI-VME interfaces
 - Central DAQ PC can have up to 6 PCI cards
- Data volumes
 - 400,000bits = 50kBytes of raw data
 - With NO suppression, event data volume from ~50kBytes to ~80kBytes
 - Only 60% increase and probably rate limited from RPCs
 - Zero suppression would make life even easier