Position and angular resolution studies with ECAL TB prototype

Introduction
Linear fit method
Results with $1,2,3$, and 5 GeV electrons
conclusions

Anne-Marie Magnan, IC London.

Introduction

o Complete test beam prototype : 30 layers, $1 \mathrm{~cm}^{2}$ cells, 9 wafers per layer.
o Objective : determine position and angular resolution in test beam data, compared with the one obtained in MC simulation.
o Method : linear fit \rightarrow take into account correlations between layers.
o For this study, only $1,2,3$ and 5 GeV single electrons (DESY test beam).
o Own generation with Mokka05.05.
Beam position and RMS : $(0 \pm 10,0 \pm 10,-220 \pm 0)$ (in mm).
Current LCIO output does not allow to have the "truth" position in $1^{\text {st }}$ ECAL layer after scattering in air/trackers materials.

Linear fit method : definition of variables

o Definition of x and y position per layer :

March 6th, 2006

Linear fit method : definition of the χ^{2}

o Estimator of how accurate the prediction of the measurement is :

- Without correlations between variables :

$$
\chi^{2}=\sum \frac{\left(x_{\text {measured }}-x_{\text {theoretical }}\right)^{2}}{\sigma^{2}}
$$

- With correlations between variables :

$$
x_{\text {theoretical }}=p_{0 x}+p_{1 x} \times z
$$

$$
\chi^{2}=\sum_{i, j}\left(x_{\text {meas }}-x_{t h}\right)_{i} W_{i j}\left(x_{\text {meas }}-x_{t h}\right)_{j}
$$

- W_{ij} is the inverse of the error

$$
\mathrm{i}, \mathrm{j}=1, \ldots . ., 30 \text { for } \mathrm{x}
$$ matrix E_{ij} :

$$
E_{i j}=\operatorname{cov}\left(D x_{i}, D x_{j}\right)=\left\langle D x_{i} D x_{j}\right\rangle-\underbrace{\left\langle D x_{i}\right\rangle\left\langle D x_{j}\right\rangle}_{=0}=\left\langle D x_{i} D x_{j}\right\rangle
$$

Linear fit method : error matrix

o

Imperial College London

Error matrix for higher energies

Linear fit method : minimisation of the χ^{2}

o X and y are uncorrelated : we consider $2(30,30)$ matrices
$\rightarrow 2$ independent fits: one for x , the other for y .
\rightarrow we can then look for the parameters $\left(\mathrm{p}_{0 \mathrm{x}}, \mathrm{p}_{1 \mathrm{x}}\right)$ of the linear fit which minimize the χ^{2} :

$$
\frac{\partial \chi^{2}}{\partial p_{1 x}}=0 \quad \frac{\partial \chi^{2}}{\partial p_{0 x}}=0
$$

o This gives the following equation:

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\sigma_{p_{0 x}}^{2} & \rho \sigma_{p_{0 x x}} \sigma_{p_{1 x}} \\
\rho \sigma_{p_{0 x}} \sigma_{p_{1 x}} & \sigma_{p_{1 x}}^{2}
\end{array}\right)
\end{aligned}
$$

Linear fit method : expected resolution

Best case : if all layers

	$\sigma_{\mathrm{p} 0 \mathrm{x}}(\mathrm{mm})$	$\sigma_{\text {poy }}(\mathrm{mm})$	$\sigma_{\text {plx }}(\mathrm{mrad})$	$\sigma_{\text {ply }}(\mathrm{mrad})$
1 GeV				
2 GeV	Best case : if			
3 GeV				
5 GeV	2.2	2.5	35	37

o Angular resolution decrease when E increase :
more laverc on the hack \rightarrow hetter 171
\Rightarrow better estimate of the average
position
o Position resolution is higher in y , why ???????

Imperial College London

Position and angular resolution

 obtained on an event by event basisEquation to solve:
$\left(\begin{array}{cc}W_{i j} & W_{i j} z_{i} \\ W_{i j} z_{i} & W_{i j} z_{i} z_{j}\end{array}\right)\binom{p_{0 x}}{p_{1 x}}=\binom{W_{i j} \bar{x}_{i}}{W_{i j} z_{i} \bar{x}_{j}}$
To solve this, need to take into account only layers i and j with hits $\boldsymbol{\rightarrow}$ remove layers with no hit from error matrix, then invert to have W matrix.

$0 \quad \boldsymbol{\rightarrow}$ Therefore have to solve it event by event.

Imperial College London

Results event by event for parameter resolution matrices

March 6th, 2006

$$
\left(\begin{array}{cc}
\sigma_{p_{0 x}}^{2} & \rho \sigma_{p_{0 x}} \sigma_{p_{1 x}} \\
\rho \sigma_{p_{0 x}} \sigma_{p_{1 x}} & \sigma_{p_{1 x}}
\end{array}\right)
$$

CALICE meeting, UCL

Result event by event for $\left(p_{0}-p_{0 M C}\right)_{x, y}$

March 6th, 2006
CALICE meeting, UCL

Imperial College London

Result event by event
 for $\left(p_{1}-p_{1 M C}\right)_{x, y}$

Energy	$\sigma_{\text {plx }}(\mathrm{mrad})$	if all layers	$\sigma_{\text {ply }}(\mathrm{mrad})$	if all layers
1 GeV	71	58	74	60
2 GeV	54	48	56	50
3 GeV	45	41	48	44
5 GeV	36	35	39	37

p1 parameter-true position for linear fit along y

Consistency checks

o Pull of the distributions for $\Delta \mathrm{p}_{0}\left(=\mathrm{p}_{0}-\mathrm{p}_{0 \mathrm{MC}}\right)$ and $\Delta \mathrm{p}_{1}$

CALICE meeting, UCL

With material in front of ECAL

o Beam position : $(4,7,10000) \mathrm{mm}$
o Expected effect of air scattering in $10 \mathrm{~m} \rightarrow \sim 13 \mathrm{~mm}$ spread.
o Observed $<x>$: $\sim 16 \mathrm{~mm}$ spread.
o Expected resolution :

- The "true" position is now given by hits in last DC layer
- $\sigma_{p 0 x}=5.2 \mathrm{~mm}, \sigma_{\mathrm{p} 0 \mathrm{y}}=5.3 \mathrm{~mm}$
- $\sigma_{p 1 x}=70 \mathrm{mrad}, \sigma_{\mathrm{p} 1 \mathrm{y}}=69 \mathrm{mrad}$
\rightarrow still correlations. Need to have the "true" position of MC particle at front ECAL face.

Future work

o Study with missing layers : better to have front, middle, back ? First layers needed for position resolution, and last ones for angular resolution... but depend on energy.
o Redo everything with material in front, and truth entry point.
o Study of reconstructed tracking resolution to separate the 2 sources and allow to compare with data.
o Redo everything when realistic digitisation is available.

Thank you for your attention

