Position and angular resolution studies with ECAL TB prototype

Introduction Linear fit method Results with 1, 2, 3, and 5 GeV electrons conclusions

Anne-Marie Magnan, IC London.

March 6th, 2006

Introduction

- Complete test beam prototype : 30 layers, 1 cm² cells, 9 wafers per layer.
- Objective : determine position and angular resolution in test beam data, compared with the one obtained in MC simulation.
- Method : linear fit → take into account correlations between layers.
- For this study, only 1, 2, 3 and 5 GeV single electrons (DESY test beam).
- Own generation with Mokka05.05.

Beam position and RMS : $(0 \pm 10, 0 \pm 10, -220 \pm 0)$ (in mm).

Current LCIO output does not allow to have the "truth" position in 1st ECAL layer after scattering in air/trackers materials.

Linear fit method : definition of variables

• Definition of x and y position per layer :

<u>Variable of interest :</u> reconstructed position compared to the expected one :

•
$$Dx = \overline{x} - x_{MC}$$
, $Dy = \overline{y} - y_{MC}$
• $x_{MC} = Vx + (z - Vz) \frac{\vec{p}_x}{\vec{p}_z}$, $y_{MC} = Vy + (z - Vz) \frac{\vec{p}_y}{\vec{p}_z}$

For this simulation : $\vec{p} = \vec{p}_z$ Redefine $z = 0 \rightarrow 1^{\text{st}}$ Si layer

March 6th, 2006

CALICE meeting, UCL

Ζ

Linear fit method : definition of the χ^2

- Estimator of how accurate the prediction of the measurement is :
 - Without correlations between variables :

$$x = \begin{pmatrix} x \\ y \end{pmatrix}$$

• With correlations between variables :

$$x_{theoretical} = p_{0x} + p_{1x} \times z$$

$$\chi^{2} = \sum_{i,j} (x_{meas} - x_{th})_{i} W_{ij} (x_{meas} - x_{th})_{j}$$

i,j = 1,....,30 for x 31,....,60 for y

• W_{ij} is the inverse of the error matrix E_{ij} :

$$E_{ij} = \operatorname{cov}(Dx_i, Dx_j) = \langle Dx_i Dx_j \rangle - \langle Dx_i \rangle \langle Dx_j \rangle = \langle Dx_i Dx_j \rangle$$
$$= 0$$

March 6th, 2006

Linear fit method : error matrix

March 6th, 2006

Error matrix for higher energies

March 6th, 2006

CALICE meeting, UCL

Linear fit method : minimisation of the χ^2

- X and y are uncorrelated : we consider 2 (30,30) matrices
 - \rightarrow 2 independent fits : one for x, the other for y.

→ we can then look for the parameters (p_{0x}, p_{1x}) of the linear fit which minimize the χ^2 : $2\chi^2$

$$\frac{\partial \chi^2}{\partial p_{1x}} = 0 \qquad \frac{\partial \chi^2}{\partial p_{0x}} = 0$$

• This gives the following equation :

CALICE meeting, UCL

Linear fit method : expected resolution

Position and angular resolution obtained on an event by event basis

Equation to solve :

$$\begin{pmatrix} W_{ij} & W_{ij} z_i \\ W_{ij} z_i & W_{ij} z_i z_j \end{pmatrix} \begin{pmatrix} p_{0x} \\ p_{1x} \end{pmatrix} = \begin{pmatrix} W_{ij} \overline{x}_i \\ W_{ij} z_i \overline{x}_j \end{pmatrix}$$

To solve this, need to take into account only layers i and j with hits \rightarrow remove layers with no hit from error matrix, then invert to have W matrix.

• \rightarrow Therefore have to solve it event by event.

Results event by event for parameter resolution matrices

March 6th, 2006

CALICE meeting, UCL

Result event by event

for $(p_0 - p_{0MC})_{x,y}$

	Energy	$\sigma_{p_{0x}}$ (mm)	if all layers	$\sigma_{p_{0y}}$ (mm)	if all layers
	1 GeV	2.6	2.4	3.1	2.8
	2 GeV	2.5	2.4	2.9	2.8
	3 GeV	2.4	2.3	2.8	2.7
	5 GeV	2.2	2.2	2.6	2.5
0 parameter-true position for linear fit along x		[p0 parameter-true position for linear fit along y		

-5GeV

CALICE meeting, UCL

Result event by event

for $(p_1 - p_{1MC})_{x,y}$

	Energy	$\sigma_{p_{1x}}$ (mrad)	if all layers	$\sigma_{p_{1y}}$ (mrad)	if all layers	
	1 GeV	71	58	74	60	
	2 GeV	54	48	56	50	
	3 GeV	45	41	48	44	
	5 GeV	36	35	39	37	
p1 parameter-true position for linear fit along x						
3000	x	5GeV 3GeV 2GeV 1GeV	3000 2500	ľ	-5GeV -3GeV -2GeV -1GeV	
2000			2000 1500			
1500			1000			
500		1.5.5.2	500			
-0.6	-0.4 -0.2 0 0.2 p1-p1MC (=	0.4 0.6 tanθ, rad)	-0.6 -0.4	-0.2 0 0. p1-p1	.2 0.4 0.6 MC (=tanθ, rad)	

CALICE meeting, UCL

Consistency checks

Pull of the distributions for 0 $\Delta p_0 (= p_0 - p_{0MC})$ and Δp_1

March 6th, 2006

-5GeV

-3GeV

2GeV

4 6 8 10 (p0-p0MC)/σ_{p0}

-5GeV

-3GeV

2GeV

4 6 8 10 (p1-p1MC)/σ_{p1}

-1GeV

0.97-0.98

2

4

-1GeV

0.96-0.99

4

2

With material in front of ECAL

- Beam position : (4,7,10000) mm
- Expected effect of air scattering in 10 m → ~ 13 mm spread.
- Observed $\langle x \rangle$: ~ 16 mm spread.
- Expected resolution :
 - The "true" position is now given by hits in last DC layer
 - $\sigma_{p0x} = 5.2 \text{ mm}, \sigma_{p0y} = 5.3 \text{ mm}$
 - $\sigma_{p1x} = 70 \text{ mrad}, \sigma_{p1y} = 69 \text{ mrad}$
 - → still correlations. Need to have the "true" position of MC particle at front ECAL face.

CALICE meeting, UCL

- Study with missing layers : better to have front, middle, back ? First layers needed for position resolution, and last ones for angular resolution... but depend on energy.
- Redo everything with material in front, and truth entry point.
- Study of reconstructed tracking resolution to separate the 2 sources and allow to compare with data.
- Redo everything when realistic digitisation is available.

Thank you for your attention

