ZHH: Linear collider Benchmark

Michele Faucci Giannelli, Mike Green

02/10/2006

Outline

- Why ZHH?
- Software
- Selection criteria for Z and H
- Comparison between detectors
- Conclusion

- These events can also be used as benchmark:
 - Different detector model
 - Particle flow algorithms

Event generation

Pandora Pythia:

-M(Higgs) = 120 GeV

-Electron polarization 80%

-Positron polarization 0%

 $-E_{CM} = 500 \text{ GeV}$

Michele Faucci Giannelli, Mike Green, Fabrizio Salvatore

Detector Simulation

- Mokka V6.0
 - -Two different detector model
 - LDC00
 - LDC01
 - Very slow processing time, could be a problem when simulating large MC samples.

Detectors description

- LDC00:
 RPC Hcal
 - TPC has 200 layers
 - ECal is 30+10 layers
- LDC01: smaller radius than LDC00
 - RPC Hcal
 - TPC has 185 layers
 - ECal is 20+10 layers

Event reconstruction

- Marlin 0.9.4 with MarlinReco 0.2
 - Processors used:
 - VTXDigi
 - FTDDigi
 - SimpleCaloDigi
 - TPCDigi
 - CurlKiller
 - LEPTracking
 - TrackwiseClustering PandoraPFA
 - Wolf
 - PairSelector
 - SatoruJetFinder
 - BosonSelector
 - MyROOTProcessor & analysis

ZHH, first look at the backgrounds

• Only ZZH and bbH available in Pandora.

Channels	Cross section (fb)				
ZHH (total)	0.142				
ZHH (Z→e⁺e⁻, H→bb)	0.00237				
ZZH (Z1→e⁺e⁻,Z2, H→bb)	0.00358				
bbH (total)	7.2				
 Ratio bbH/ZHH ~ 3000 					

02/10/2006

- In PairSelector:
 - two particles (electrons or muons) of opposite charge
 - Each of them must have an energy > 10 GeV

Higgs Selection

- In SatoruJetFinding
 - Request 4 jets
- In BosonSelector:

- Combine the jets to minimize

Efficiencies

/	Events	LDC00	LDC01	
	Generated	1	1	
	After Tracking	0.97	0.96	
	After Z selection	0.97	0.96	
	After H selection	0.97	0.96	

Michele Faucci Giannelli, Mike Green, Fabrizio Salvatore

Reconstructed Z Mass for bbH

- The difference is due to the missing muon id:
 - Muons and pions are not separated
 - one or both "muons" can be a pion

02/10/2006

• Then there are more "muons" than electrons

Michele Faucci Giannelli, Mike Green, Fabrizio Salvatore

D² plot with Z mass cut

Signal ZHH (Z→ µµ)
ZZH Background
bbH Background

Bold Green

Cut on Z mass 80 < Select < 100

Signal ZHH (Z→ ee)
ZZH Background
bbH Background

lvatore

$\Delta D0$ and $\Delta Z0$ for lepton tracks

$\Delta D0$ and $\Delta Z0$ for lepton tracks

Possible improvements

- Looking for other variables to discriminate signal from bHH background:
 - Angle between lepton and jet, small for bbH, large for ZHH.
 - $-D' = (m_{12} + m_{34} 2m_H)$
- Need for more background statistic
- Investigating possibility to use fast simulation

Z/W separation

02/10/2006

Michele Faucci Giannelli, Mike Green, Fabrizio Salvatore

Z/W separation with Pandora PFA

Conclusion

- Started study on the background, as expected the biggest problem is the contamination.
- We can use ZHH and ZZH to discriminate between detectors.
- First physical evidence of the need of a bigger detector!
- Z/W separation plot using WOLF, closer to 60%/ E that 30 %/ E.
- Preliminary results from Pandora PFA are promising.

02/10/2006

Future plans

- Continue ZHH analysis:
 - More backgrounds,
 - New event generator for comparison,
 - -New PFA,
 - 6j study.
- Use Z/W separation plot with different:
 - PFA (better study of Pandora)
 - Magnetic Fields
 - Detectors

02/10/2006

 Release of new analysis processors for Marlin

ZHH, $Z \rightarrow$ electrons

Reconstructed Z Mass for bbH

- The difference due to the missing muon id:
 - Muons and pions are not separated
- Then "muons" are many more than electrons

The International Linear Collider

- Next generation electron-positron accelerator
 - Energy in CMS from 90 GeV up to 500 GeV
 - Polarized beams
- Precision physics:
 - Higgs mass,
 - SUSY sector,
 - Top mass,
 - Other LHC discoveries...
- New physics:
 - Self coupling of the Higgs

Detector requirement

To achieve ILC goals there are several requirements:

- Good momentum resolution
- High granularity calorimetry
- Improved particle flow algorithm.

In order to test different algorithms and detector designs, we need several benchmark channels:

- -ZH
- WW, ZZ
- ttbar
- ZHH