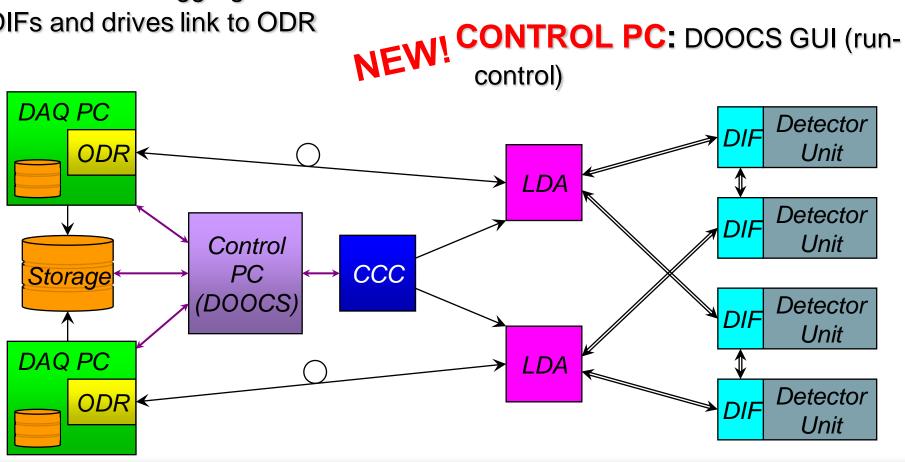
DAQ Hardware Status

9 September 2008

Matt Warren

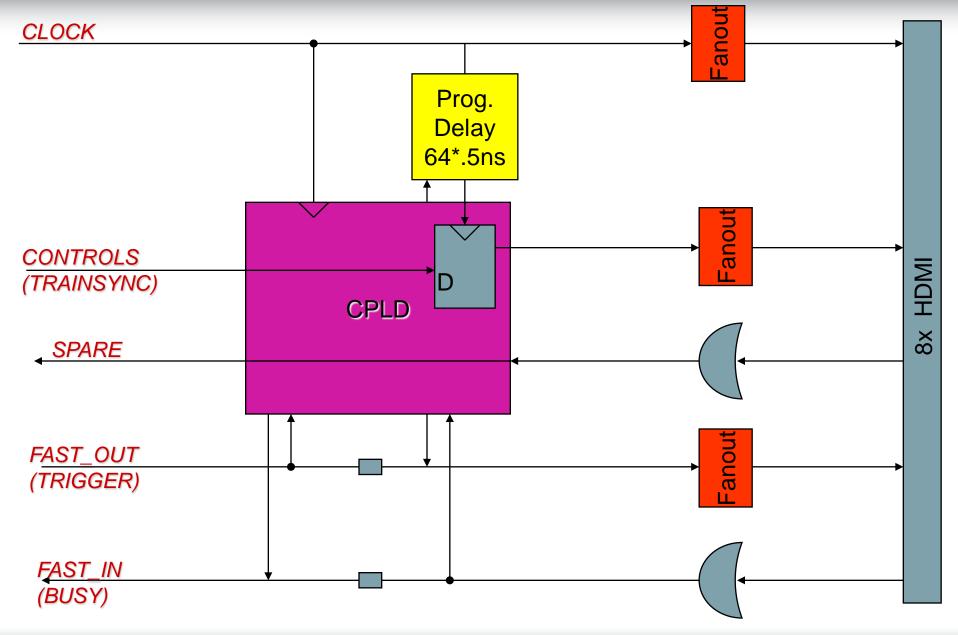
Valeria Bartsch, Veronique Boisvert Maurice Goodrick, Barry Green, Bart Hommels, Marc Kelly, Andrzej Misiejuk, Vishal Panchal, Martin Postranecky, Tao Wu



DAQ architecture

Detector Unit: ASICs

- **DIF:** Detector InterFace connects Generic DAQ and services
- **LDA:** Link/Data Aggregator fanout/in DIFs and drives link to ODR
- **ODR:** Off Detector Receiver PC interface for system.
- **CCC:** Clock & Control Card: Fanout to ODRs (or LDAs)

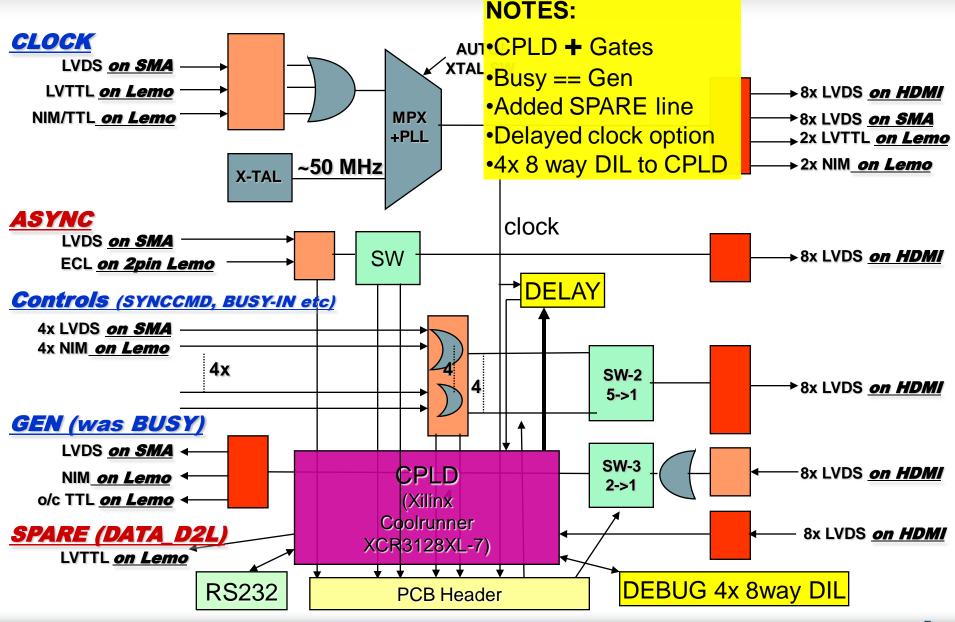

CCC

9 Sept 2008

Matt Warren et al. - DAQ Status - CALICE Manchester

Overview Schematic

UCL



9 Sept 2008

Matt Warren et al. - DAQ Status - CALICE Manchester

Detailed Overview Schematic

9 Sept 2008

Matt Warren et al. - DAQ Status - CALICE Manchester

C&C Logic and Interfaces

UCL

HDMI I/O: x8

TRAINSYNC

GEN (was BUSY)

SPARE(DATA_D2L)

OUT:

IN:

CLOCK

ASYNC

- LVDS AC/DC

CPLD (XCR3128XL-7) replacing many jumpers and switch logic

RS232 interface as a means of control

Many buffers, 0Ω resistors and solder links for better signal integrity, isolation and configuration

Signal Inputs:

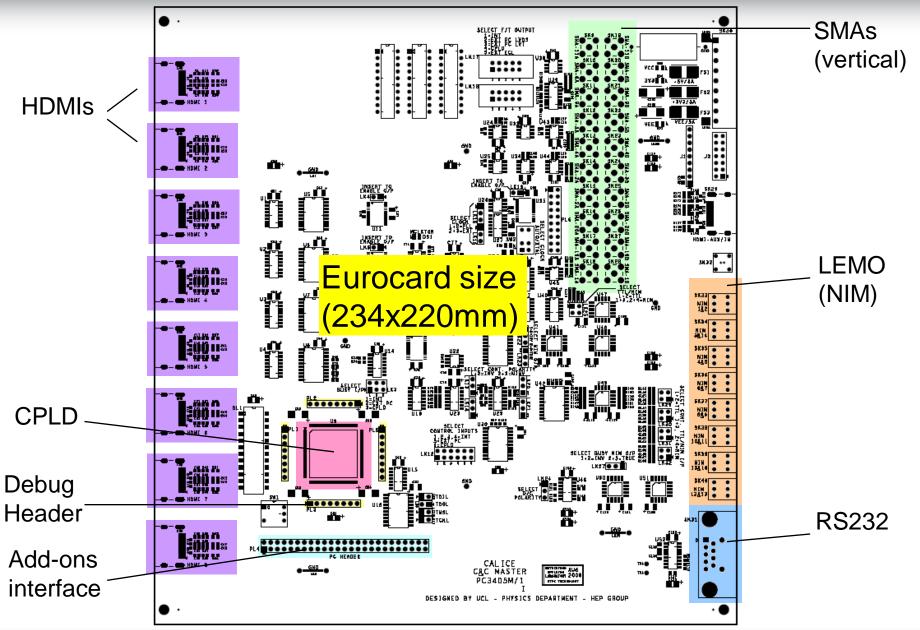
- CLOCK
 - 1x LVDS (SMA DC)
 - 1x LVTTL DC (Lemo)
 - 1x NIM/TTL (Lemo) AC/DC
- ASYNC
 - LVDS (SMA) DC
 - ECL (2 pin LEMO) AC
- Controls (SYNCCMD, BUSY etc. + more)
 - -4x LVDS (SMA)
 - -4x LVDS (SIVIA)
 - 4x NIM/TTL (Lemo) AC/DC

Signal Outputs:

- CLOCK
 - 2x LVTTL on Lemo
 - 2x NIM on Lemo
 - 2x LVDS on SMA
 - 8x LVDS on DIL Header
- TRAINSYNC
 - LVTTL on Lemo
- GEN (was Busy)
 - LVDS on SMA
 - NIM on Lemo
 - OC-TTL on Lemo
- Spare (DATA_D2L)
 - LVTTL on Lemo

*NO RJ45

9 Sept 2008


Matt Warren et al. - DAQ Status - CALICE Manchester

Some Hardware Details

- Clock:
 - -PLL/MUX /CS581-02
 - +/-150 ps jitter
 - 45min/55max Duty Cycle
 - Failover if external clock missing for 3 cycles.
 - -Local Osc. 100 MHz/2 = 50% duty-cycle 50MHz
- CPLD: Xilinx CoolRunner XPLA3 XCR3128XL-7
 - -3.3V, low power
 - 128 macrocells with 3,000 usable gates
 - 5.5ns pin-to-pin logic delays
- Extra IO via IDC header.
- Single PCB with connectors at the edge (big!)
- Separate PSU
- Clock Delay Option to CPLD 64x0.5ns
 - -For signal deskew (CLOCK unaffected)

Board Layout

9 Sept 2008

Matt Warren et al. - DAQ Status - CALICE Manchester

Status/Schedule

UCL

- Schematic DONE.
- Layout **DONE**.
- Manufacture IN PROGRESS .
 - Started last week (1 Sept).
 - Run of 2 with 8 more when satisfied working
 - Manufacturing PCBs for all 10 (2x price = 10x price!)
 - Will do second run of PCBs if any problems found
 - -First 2 boards due week of 15 Sept, **BUT** component leadtimes may delay a few weeks.
 - -Next 8 loaded as soon as testing is complete.
 - -Procured components for all 10 now, so won't delay further.
- Next: Firmware development!

Function

Trainsync signal output

Asynchronous signal

Clock

Unused

Busy

CCC HDMI Signals

CCC Signal

TRAINSYNC OUT

CLOCK OUT

Unused

FAST IN

FAST OUT

Uses same HDMI cable and signal types/direction

• CLOCK

-Machine clock (50-100MHz) ASYNC_L2D

• TRAINSYNC_OUT

- -Synchronisation of all the front-end slow clocks.
- An external signal will be synchronized with/to CLOCK, phase adjusted and transmitted as a single clock-period wide pulse to the LDA.

CLink Signal

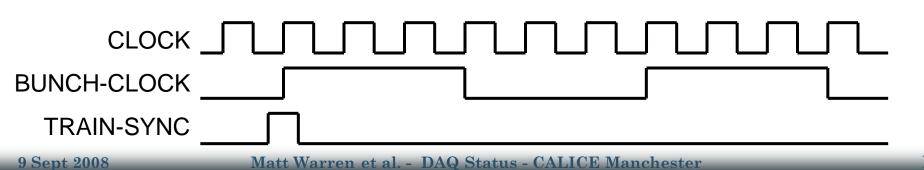
CLOCK L2D

DATA L2D

GEN_D2L

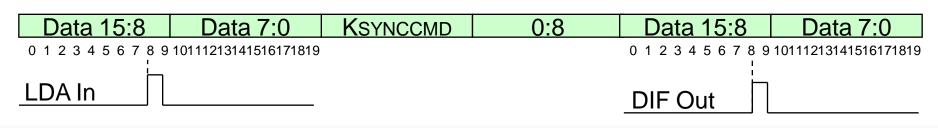
-To allow communicating with a stand-alone DIF, the CCC board will can be configured to send the LDA 8b/10b serialised command for train-sync.

• FAST_OUT


- -Transfer asynchronous triggers as fast as possible.
- -In AUTO mode, used to Transfer BUSY to detector (toggle = level)

• FAST_IN

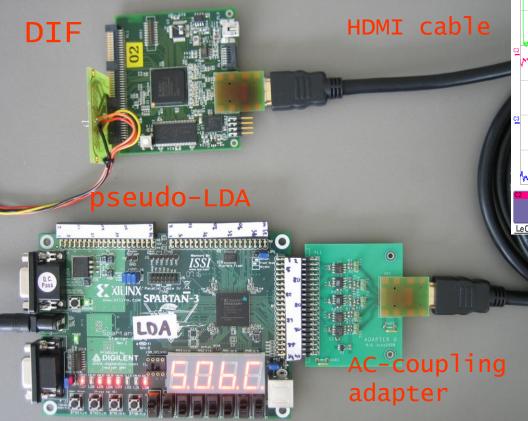
- -Used by DIFs (via LDA) signal to "stop acquisition" when needed.
- Due to AC coupling the busy must asserted by constantly toggling this line.

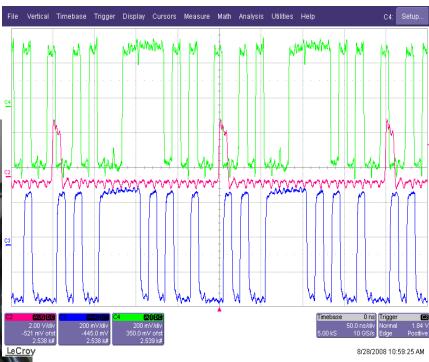

Timing Overview

- Presume machine CLOCK period < bunch-period
 - -Expected to be 50-100MHz, local or machine.
 - -Common fanned-out to the detector
- BUNCH-CLOCK (slow clock) derived as CLOCK/n
 - –Re-produced locally on DIF (with TRAINSYNC & counter)
- Start of train signal (TRAINSYNC) synchronises bunchclocks on all DIFs.
 - -Requires fixed-latency signal a SYNCCMD.
 - -TRAINSYNC "qualifies" CLOCK edge

SYNCCMD Details

- SYNCCMD is the ONLY mechanism for synchronising DIFs
 - -4 (or 16) types of command are possible.
- Expects a PRE bunch-train/spill signal
 - Signal in known phase with BUNCH CLOCK
 - Fixed period prior to first bunch of train
 - Synchronous to CLOCK
- CCC card forwards signal to LDAs
 - Synchronises signal to local clock when needed
- LDA stores arrival time wrt serialiser bit counter.
- Next Word to DIFs replaced with special SYNCCMD word
 - First byte dedicated K character
 - Second byte (7:6): Type; (5:0): Delay (could be 3:5 ratio too)
- SYNCCMD system on DIF delays signal specified number of CLOCKs and issues the required signal.


(generic) DIF


UCL

DIF -LDA link testing

UNIVERSITY OF CAMBRIDGE

- Link shows signs of life.
 - pseudo-LDA sends CLK & 8B/10B data @ 100MHz over ACcoupled LVDS on HDMI cables

data loop-back in firmware stable

DIF: Status (generic) and Plans

- Test hardware in place
- Firmware development started
 - LDA Link integration

ECAL DIF prototype: 65x72mm, 8 layers

- 1. JTAG programming header
- 2. LDA link HMDI connector
- 3. DIF link connector
- 4. mini-USB connector
- 5. Xilinx PROM
- 6. Cypress 2MB 10ns SRAM
- 7. Xilinx Spartan3-1000 FPGA
- 8. FDTI FT245R USB controller
- 9. 20p user header connector
- 10. reset pushbutton
- 11. 90pin SAMTEC IB connector

e.g: ECAL DIF

- 2 DIFs produced, parts available for 10 more.
- DIF hardware is (at least partly) functional

LDA

UCL

LDA-ODR Connectivity

•Prototype LDA has hardware problems.

- Mainly incorrect signals routed on PCB to Eth add-on
- LDA has been modified to attempt fix (see pic!)
- Ethernet RX OK, auto-negotiation starts OK. BUT ..
- Ethernet TX appears corrupt
- random glitches and/or clock recovery problems.
- PHY in loop-back OK, so looks like the SERDES
- Investigating ...
- •SOME GOOD NEWS: ODR-LDA protocol almost finalised

MANCHESTER

LDA-DIF Connectivity

- •Current boards have 8 working HDMI links,
 - Option for 10 on future boards with simple change of FPGA.
- •FPGA is basically used as an LVDS transceiver and clock fanout, although it will probably also handle the separate prompt/fast signals to/from the DIF.
- Link documentation is proceeding, large amounts have been already done.

MANCHESTER

New LDA Base Board

- Enterpoint is designing a replacement board for the BroadDown2 known as the Mulldonoch2.
 - Extra I/O capabilities.
 - EBX format board.
 - PCI connector is replaced by a PC104 connector.

MANCHESTER

- SDRAM onboard.
- SPI flash ram.
- Better power system

Prototype production is expected sometime this month.

- Is not designed for us especially, but rather is a generic board Enterpoint had planned already. Design time table got shifted when we found the error in the existing BD2 design.
- A corrected BroadDown2 design is also going to be available in roughly the same time frame.

LDA: Conclusions

 Need to get Ethernet working, without that we are dead in the water currently.

MANCHESTER

- •Then we can proceeded with more of the firmware development and begin to get to a point where it might actually be useful and talk to the outside world.
- Need to consider what the BD2->MD2 migration path means for us, with regard to possible changes to LDA design, to include more features etc.
 - Possible re-spin of the Ethernet Board, to remove the bits we don't want/need and lower cost of it. (MD2 might already have USB built in, and we might decide to skip the TLK2501 all together).
 - Possible extra HDMI interface expansion given the extra IO.
- •Bench tests need to be done on the timing/synchronisation system to make sure we can achieve in practice what we thought was possible.

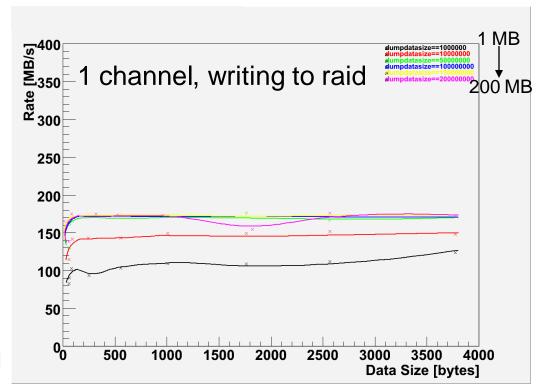
ODR

9 Sept 2008

Matt Warren et al. - DAQ Status - CALICE Manchester

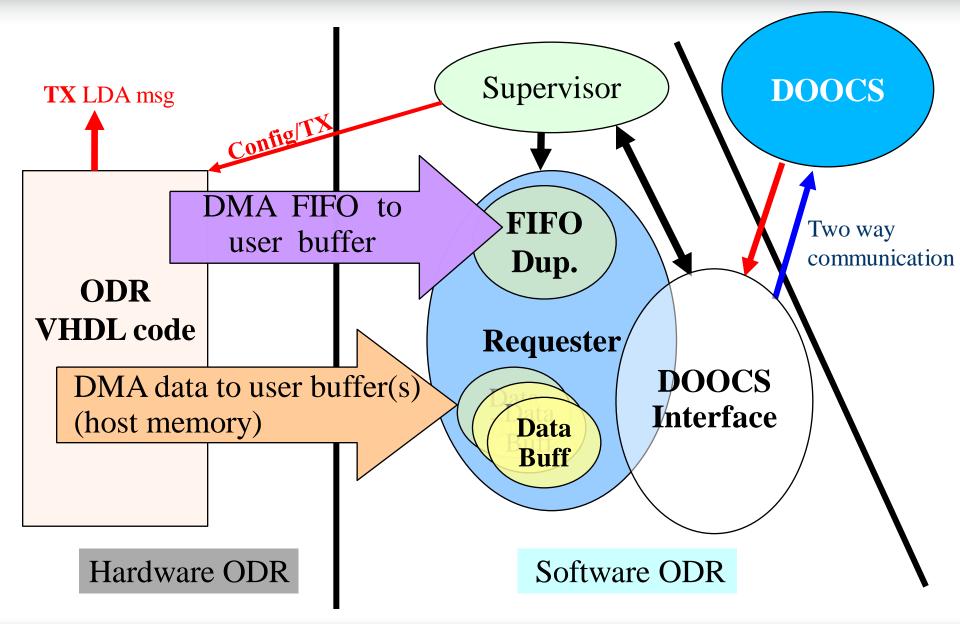
Hardware/Firmware

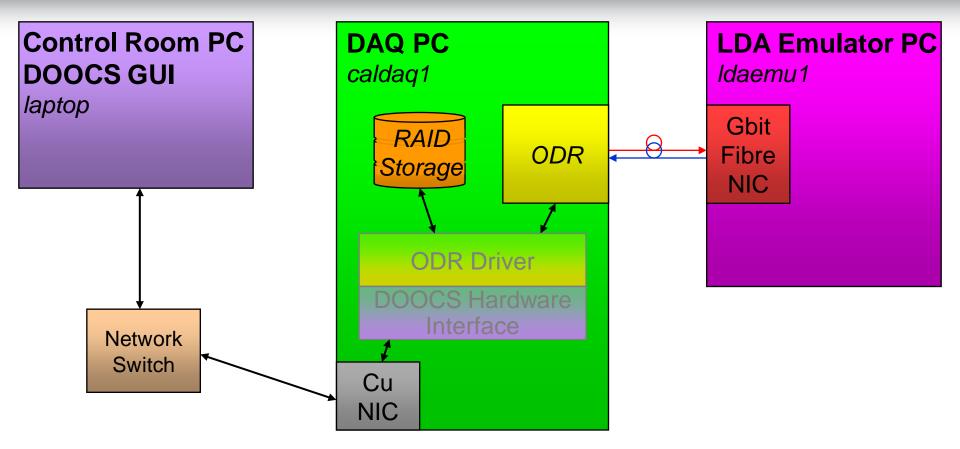
- •ODR is working(!)
 - -Receive data on 4x fibre (RX),
 - -Write to disk FAST (250MB)
 - -Send data up fibre (TX)
 - -Controlled from Linux driver


- Future upgrade: Decode event header from LDA —Provides on-line info
 - -Can deal with control messages from LDA
 - -Allows host to write to disk without processing

Rate performance optimization (from ODR to disk)

Several factors to optimize:


- Architecture of the host (hyperthreading, raid array disks, kernel version, etc)
- Number of DMA buffers
 - currently using 950
- Number of buffers to fill before dumping the data to disk
 - best to have about N DMA buffers - 200 (so 750 for 950 DMA buffers)
- Size of files to write (grouping of data files)
 - Called dumpdatasize on plot
 - Dominant factor
 - chose 100 MB


V. Panchal, V. Boisvert, A. Misiejuk

Software: Interface to DOOCs

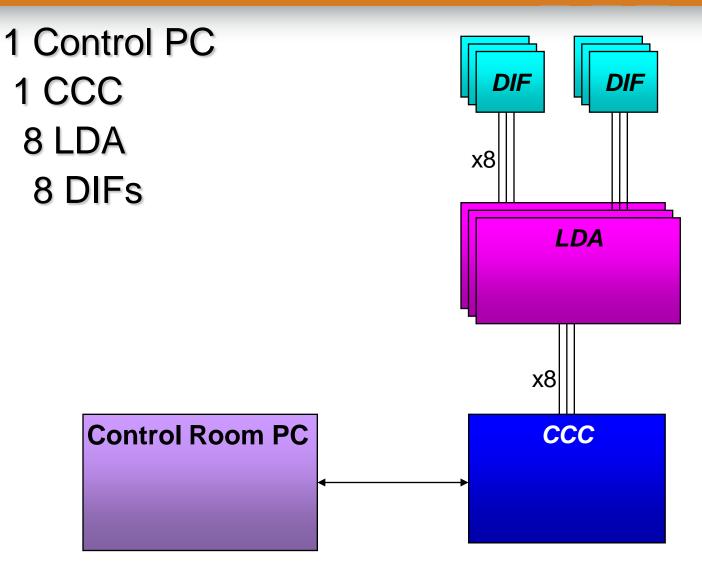
Demo Construction (Advert!)

•Control PC signals LDA Emulator (via ODR) to start or stop sending data with command messages

•ODR receives data and writes it to disk.

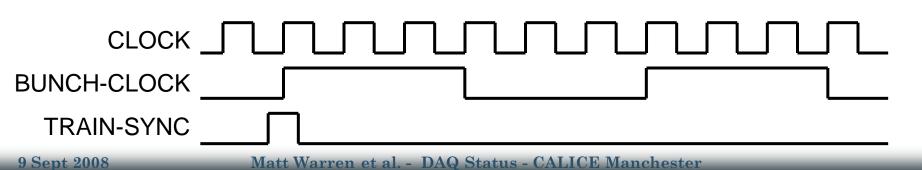
Matt Warren et al. - DAQ Status - CALICE Manchester

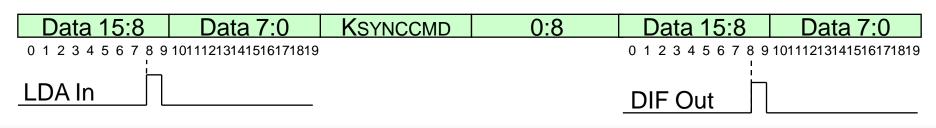
The End


(actually not the end) Extra slides on C+C

Introduction

- Goal: A timing system compatible with everyone (Remi/Vincent/Mathias etc. been asking good questions)
- Looked at details of:
 - -Operating modes
 - Trigger
 - Auto
 - Single
 - -Machine interface/sync
 - -Synchronisation of detector
 - -Signalling over our cables
 - Common usage AND SIGNAL NAMING
 - -Handing FE errors etc (BUSY)


Connection Overview


Timing Overview

- Presume machine CLOCK period < bunch-period
 - -Expected to be 50-100MHz, local or machine.
 - -Common fanned-out to the detector
- BUNCH-CLOCK (slow clock) derived as CLOCK/n
 - –Re-produced locally on DIF (with TRAINSYNC & counter)
- Start of train signal (TRAINSYNC) synchronises bunchclocks on all DIFs.
 - -Requires fixed-latency signal a SYNCCMD.
 - -TRAINSYNC "qualifies" CLOCK edge

SYNCCMD Details

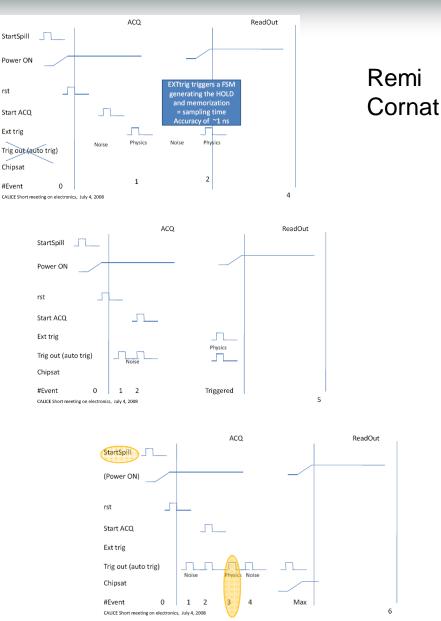
- SYNCCMD is the ONLY mechanism for synchronising DIFs
 - -4 (or 16) types of command are possible.
- Expects a PRE bunch-train/spill signal
 - Signal in known phase with BUNCH CLOCK
 - Fixed period prior to first bunch of train
 - Synchronous to CLOCK
- CCC card forwards signal to LDAs
 - Synchronises signal to local clock when needed
- LDA stores arrival time wrt serialiser bit counter.
- Next Word to DIFs replaced with special SYNCCMD word
 - First byte dedicated K character
 - Second byte (7:6): Type; (5:0): Delay (could be 3:5 ratio too)
- SYNCCMD system on DIF delays signal specified number of CLOCKs and issues the required signal.

- CCC does NOT support varied delays on individual outputs.
- LDAs can NOT adjust individual link timings
 - -Presumed cables to all LDAs equal length
- DIFs need to adjust own timing if needed –FPGA resources (or board) –Custom cables (available?)
- CCC card can adjust timing of TRAINSYNC wrt CLOCK (1/2 ns steps)

CCC Link Interface

- CCC connects to LDA, DIF and ODR using the 'standard' HDMI cabling and connectors and pinout (*CLink*)
 CCC can be used as a pseudo-LDA for stand-alone DIF testing
- A distinction is made between fast and fixed latency signals:
 - Fast signaling is asynchronous and uses a dedicated line to transfer a pulse. No attempt is made to encode data.
 - Fixed-latency signaling will not arrive fast, but will arrive a known latency after reception by CCC (Jitter 1 CLOCK).

HDMI Signals				
CLink Signal	Direction	Function	Туре	
CLOCK_L2D	LDA→DIF	Distributed DIF Clock	STP	
DATA_L2D	LDA→DIF	Data to DIF (mainly configuration)	STP	
DATA_D2L	DIF→LDA	Data from DIF (mainly events)	STP	
ASYNC_L2D	LDA→DIF	Asynchronous Trigger	UTP*	
GEN_D2L	DIF→LDA	General use	STP	


* Twisted pair not guaranteed by HDMI specification but seen in commercial cables

Detector Operating Modes

- Triggered
 - -External signal causes ASICs to take data

 Single (auto-trig) -ASICs auto select data, but readout controlled by trigger

- Burst (auto-trig)
 - –ASICs signal when full
 - –Fed to CCC as BUSY
 - CCC sends stop-acquisition signal to entire detector

rst

CCC HDMI Signals				
CLink Signal	CCC Signal	Function		
CLOCK_L2D	CLOCK_OUT	Clock		
DATA_L2D	TRAINSYNC_OUT	Trainsync signal output		
DATA_D2L	Unused	Unused		
ASYNC_L2D	FAST_OUT	Asynchronous signal		
GEN_D2L	FAST_IN	Busy		

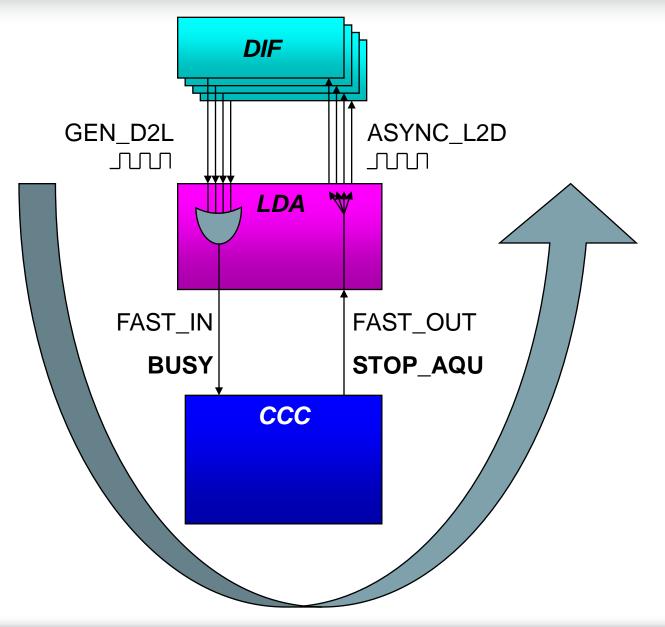
• CLOCK

– Machine clock (50-100MHz)

• TRAINSYNC_OUT

- -Synchronisation of all the front-end slow clocks.
- An external signal will be synchronized with/to CLOCK, phase adjusted and transmitted as a single clock-period wide pulse to the LDA.
- -To allow communicating with a stand-alone DIF, the CCC board will can be configured to send the LDA 8b/10b serialised command for train-sync.

• FAST_OUT


- -Transfer asynchronous triggers as fast as possible.
- -In AUTO mode, used to Transfer BUSY to detector (toggle = level)

• FAST_IN

- -Used by DIFs (via LDA) signal to "stop acquisition" when needed.
- Due to AC coupling the busy must asserted by constantly toggling this line.

Busy Flow

Matt Warren et al. - DAQ Status - CALICE Manchester