
UK software work

David Ward University of Cambridge •Simulation •Reconstruction •Preparations for test beam

Simulation

- Comparisons between hadronic models in G3/G4 (see G.Mavromanolakis talk)
- Also now have some results from Fluka (using Flugg – N.Watson).
- Discrepancies between models for electron response, despite being OK(ish) for muons.

Electron simulation

- Unless we understand differences between electron shower, how can we interpret differences for hadrons?
- Geant4 results vary with version number. e.g. for 1 GeV electrons:

	Geant 4.5.2	Geant 4.6.0	Geant 4.6.1	Geant3	Flugg
N(Ecal)	28.6	29.1	28.2	32.3	35.1
E(Ecal) /MIPS	143.7	139.2	136.7	156.3	177.8

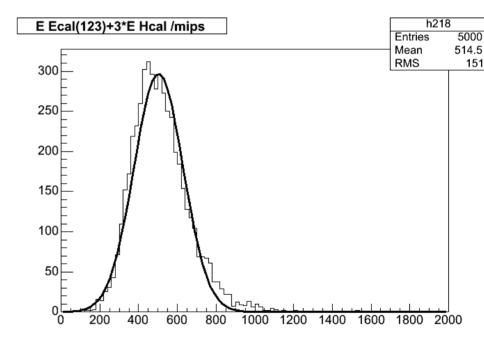
Electron simulation

- Made some investigations using Geant3/Geant4; turning off various combinations of physics processes.
- Reveals likely culprit is Multiple Scattering. Furthermore, multiple scattering code was rewritten in Geant 4.6 the Geant 4.5.2 versions are still available as an alternative.
- Turn off Multiple Scattering completely:

	Geant 4.6.1	Geant3	Flugg
N(Ecal)	28.3	29.0	29.4
E(Ecal) /MIPs	196.7	195.9	205.3

Of course the energy deposited changes completely, but now Geant4 and Geant3 agree well. Flugg much better, though still some discrepancy.

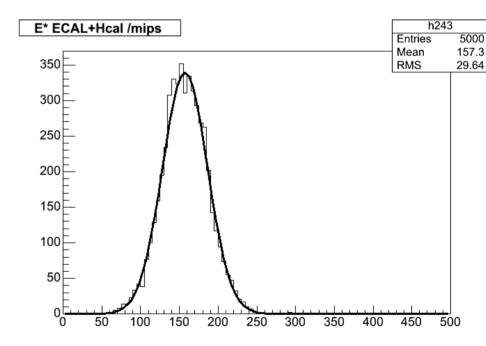
What is the mechanism? Seems that fine details of multiple scattering (choice of step length etc.) influence whether low energy electrons produced in tungsten sheets escape.


e.g. A 5 MeV e- produced in the centre of a 1.4 mm plate yields 0.15 MIPs in Geant4 and 0.55 MIPs according to Geant3 in the following Si layer.

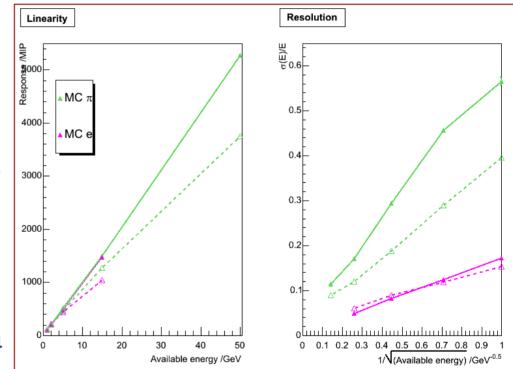
Reconstruction

- In preparation for energy flow, need calorimeter clustering algorithm.
- Should function for different detector geometries/technologies.
- Work in Cambridge see C.Ainsley's and G.Mavromanolakis' talks today. Also Mark Thomson.
- Combination with tracking still cumbersome. Use BRAHMS tracking code.
- During summer, Mark reached $\sigma(E)/E \sim 40-45\%/\sqrt{E}$. Some distance still to reach our 30%/ \sqrt{E} goal.
- Need energy reconstruction in ECAL/HCAL...

Energy reconstruction


- Studying Calice prototype (with scintillator tile HCAL; cell size 1 cm²).
- Form EECAL by weighting three sections 1:2:3 to account for sampling density.
- Add EHCAL with appropriate weight to optimise resolution; roughly EECAL+3*EHCAL.
- Energy resolution about 29% for 5 GeV π.
- Non-Gaussian tail on high side.
- Cells with very high energy deposition tend to be caused by hadrons (mainly protons and nuclei).

D.R. Ward

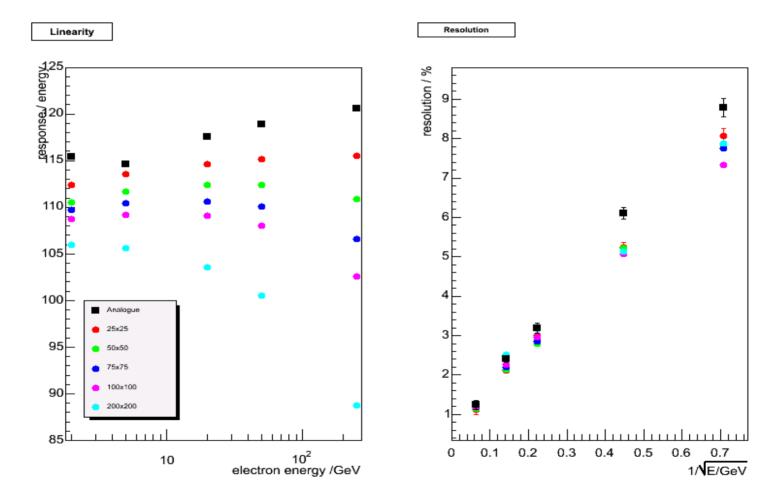

Energy reconstruction (contd.)

- Try non-linear weighting of cells.
- Sum E_i^k instead.
- k=1 corresponds to normal procedure. k=0 is digital calorimeter.
- k=0.5 seems somewhere near optimal.
- Form E'ECAL+1.1*E'HCAL:
- Energy resolution about 19%.
- Much nicer Gaussian shape.

Energy reconstruction (contd.)

- Check other energies:
- Quite a dramatic improvement in hadron energy resolution; achieving around 40%/√E. Not much effect on electron resolution (up to 15 GeV).
- But, linearity of energy response is much less good, especially for electrons. This may be a bad thing. Could calibrate it for single particles, but could mess up jets with overlapping energy deposits.
- e/π ratio is further from unity.
- Worth further study? For example compare with RPC DHCAL, look at dependence on cell sizes etc. More careful optimization of parameters.
- Have made similar study in Minos (4 cm scintillator strips), and confirmed similar results using test beam data. Actually using it for hadronic event reconstruction.

D.R. Ward


MAPS simulation

- Method run Mokka 3.2 with modified local database. Change Si thickness from 500 to 5 microns; keeping all else the same.
- D09 Geometry (40 layers).
- Store energy deposits in 25x25 micron cells for subsequent analysis; they can then be merged into larger cells as required.
- Apply threshold of 0.3 MIP (=450 eV).
- Look at <N> and r.m.s./<N> for electrons at various energies and cell sizes.
- Compare with analogue mode, i.e. 500 micron Si
- In both cases, weight layers 31-40 by a factor 3.

MAPS simulation

	5 GeV e- <n></n>	rms/ <n></n>	50 GeV e- <n></n>	rms/ <n></n>
25x25µm	568±1	5.22±0.13%	5758 ±5	1.97±0.07%
50x50µm	559±1	5.21±0.13%	5620 ±5	2.12±0.07%
75x75µm	552±1	5.06±0.13%	5505 ±5	2.11±0.07%
100x100µm	546±1	5.07±0.13%	5400 ±5	2.27±0.07%
200x200µm	528±1	5.14±0.13%	5026 ±5	2.47±0.07%
1x1cm analogue Calice UK Meeting	1091±2	6.10±0.13%	11292 ±14	2.41±0.09%

MAPS study

Calice UK Meeting / 10/11/2004

MAPS study

- Samples from 2 to 250 GeV give some indication of linearity of response. Digital mode no worse than analogue.
- Ideally aim for 50x50 micron cells?
- Energy resolution actually slightly better for digital mode, especially at low energies.
- Should look at effect on pattern recognition.
- Variation of <n> with cell size gives some measure of multiple hits.

Preparations for test beam

- 1. Conversion of calorimeter data to LCIO format.
- 2. Store beam-related (and environmental) data in LCIO.
- **3.** Apply calibration to data (may be part of item 1.)
- 4. For MC simulation of "digitization" (e.g. noise). Do this after Mokka (assuming info is adequate). Base on Catherine Fry's work?
- Analysis of MWPC/Čerenkov beam data; particle id etc; may use as filter before subsequent analysis.
- 6. Clustering code (CGA/GM etc)
- 7. Histogramming + analysis
- 8. Event display.

Reconstruction + analysis

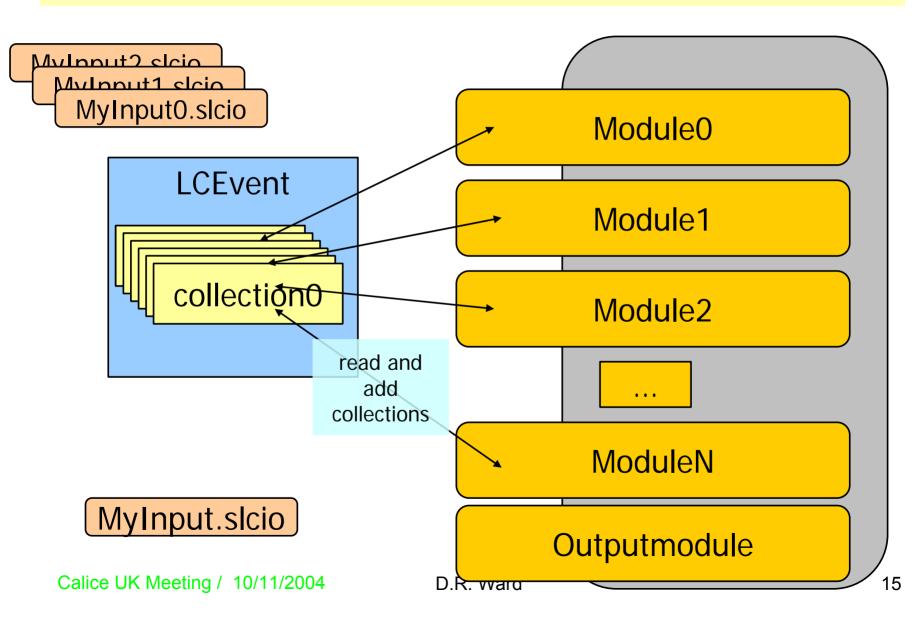
- First "reconstruction framework" exists: MARLIN
 Modular Analysis and Reconstruction for the LiNear Collider
- see talk by J. Samson in this meeting
- simple, open framework

-dynamically configured through steering file

-defines a standard structure for a module

LCIO based

It's a starting point, lots still needs to be done


existing modules: HCAL prototype ganging module Jet Finder, Lepton Finder, ZVTOP module soon: wrapped reconstruction software (tracking, ...) Cluster finding

Need to make all this work together; make it usable.

Calice UK Meeting / 10/11/2004

D.R. Ward

MARLIN – modules and LCIO

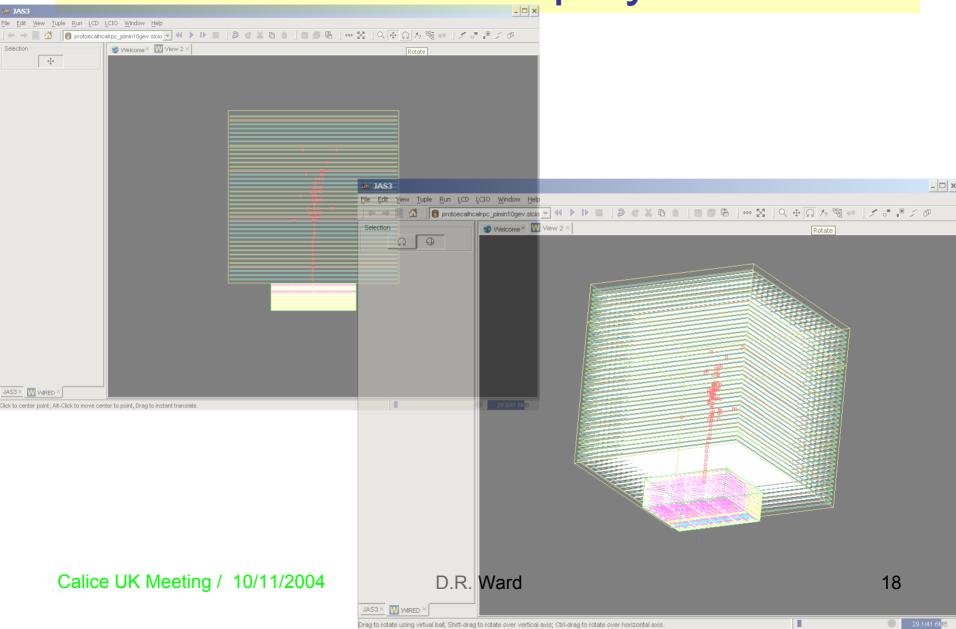
First tests with JAS3/Wired4 (NKW)

- Initial tests using JAS3 and Wired4 (plugin only now)
- Feedback on experience posted on Freehep forum for Wired4/JAS3

http://forum.freehep.org/

- Quite positive, easy to get started
- Some small corrections/features required, in next release (soon...)
- Could be useful as event display/debugging tool for DESY test beam

• Easy to install, functional


- Integrates LCIO browser with simple wire-frame event display, geometry generated directly by Mokka (Heprep2)
- Reads raw LCIO files via plugin (internally converts to Heprep format)
- Can run AIDA compliant analysis (e.g Java), should consider as one option for early running

Calice UK Meeting / 10/11/2004 D.R. Ward

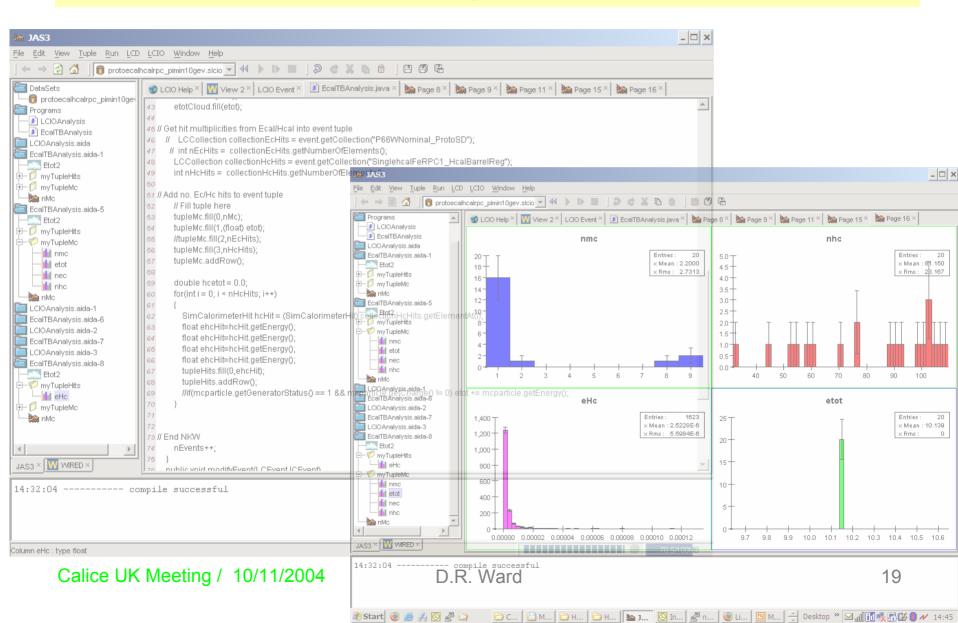

LCIO event browser

Image: State Stat	DataSets View 2 * LCIO Analysis aldo Programs Event.1 Colocanaysis aldo Event.1 Colocanaysis aldo Event.1 Programs Event.1 Colocanaysis aldo 0 Programs 239386:4 Programs 239386:4 Programs 239386:4 Programs 130000da Programs 239386:4 Programs 130000da Programs 130000da Programs 239386:4 Programs 130000da Programs 130000da Programs 239386:4 Programs 130000da Programs 130000da Programs 130000da Programs 130000da Programs 10000da Programs 14900 Programs 14900 Programs 14900 Programs 14900 Programs 14900 Programs 14900 Pr	File Edit View Tuple Run LCD		- 13 e 1	()					_ 🗆
Image: Construction of the construle of the construction of the constructio	Clobandysis adds Coloursyste adds In Clobandysis adds Coloursyste adds In the text SinglehcalFetric1_HeadBarreRep SinglehcalFetric1_HeadBarreRep Societion: RedWhominin_ProteSD type: SincleAdvineterHit atze: 5 flags: 8000000 Intervention SinglehcalFetric1_HeadBarreRep SinglehcalFetric1_HeadBarreRep SinglehcalFetric1_HeadBarreRep Intervention SinglehcalFetrintetric1_HeadBarreRep	DataSets	🔮 LCIO Help X 🔣 View 2 X LCIO Ever	-		Page 8 ×				
I COOAnalysis Image: Coordination of a control of	ColorAnaysis ColorAnaysis MCParticle ColorAnaysis SingleticaFeRC1_HoaBarreRg ColorAnaysis SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg Model Model SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg Model Model SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg Model Model SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreRg SingleticaFeRC1_HoaBarreFg SingleticaFeRC1_HoaBarreFg Model Model SingleticaFeRC1_HoaBarreFg SingleticaFeRC1_HoaBarreFg SingleticaFeRC1_HoaBarreFg Model SingleticaFeRC1_HoaBarreFg SingleticaFeRC1_HoaBarreFg SingleticaFeRC1_HoaBarreF			Collection: DEEAM	lominal ProtoSD t	una:SimCalorimate	vrHit cizo:5 flago:	3000000		
I CLOARANYSE ands I SCO2 I	Image: State of the state	LCIOAnalysis			1	1	1	-		+
Image: Cold 2 Image: Cold 2 20038-4 24 900 27.01 8.0500 1.5674 Image: Cold 2 Image: Cold 2 100001a 0 2.53382-4 -14 900 207.01 8.0500 1.5704 Image: Cold 2 Image: Cold 2 100001a 0 2.53382-4 -14 900 273.53 8.0500 1.5714 Image: Cold 2 Image: Cold 2 1.5714 1.50011a 0 2.4699E-4 -14 900 273.53 8.0500 1.6198 Image: Cold 2 Image: Cold 2 Image: Cold 2 1.5714 1.5714 1.50011a 0 2.4699E-4 -14.900 273.53 8.0500 1.6198 Image: Cold 2 Image: Cold 2 Image: Cold 2 Image: Cold 2 1.5714 1.5714 1.5714 Image: Cold 2 Image: Cold 2 Image: Cold 2 1.4900 273.53 8.0500 1.6198 Image: Cold 2 Image: Cold 2 Image: Cold 2 Image: Cold 2 1.5714 1.5714 Image: Cold 2 Image: Cold 2 Image: Cold 2 Image: Cold 2 1.4900 273.53 8.0500 1.5714 Image: Col	B002 0 26028-4 24 800 267 01 5.0500 1.574 1 100000da 0 25028-4 14 900 273 33 6.0500 1.5271 1 1502011a 0 3.2748-4 14 900 273 33 6.0500 1.5271 1 1502011a 0 3.2748-4 14 900 273 33 6.0500 1.5271 1 1502011a 0 2.24998-4 14 900 273 53 6.0500 1.5271 1 1 1 0 2.24998-4 14 900 273 53 6.0500 1.5271 1 1 0 2.24998-4 14 900 273 53 6.0500 1.5271 1 1 1 1 1 1.4900 273 53 6.0500 1.5271 1 1 1 1 1.4900 273 53 6.0500 1.5271 1 1 1 1 1.4900 273 53 6.0500 1.5274 1 1 1 1 1.4900 2.24998-4 1.4900 2.4998-4 1.4900<	El LCIOAnalysis.aida								
1800011a 0 2.3593E-4 -14.900 287.01 6.0500 1.5704 1602611b 0 5.2744E-4 -14.900 273.53 -6.0500 1.6271 1602011a 0 2.4699E-4 -14.900 273.53 -6.0500 1.6271 1600011a 0 2.4699E-4 -14.900 273.53 -6.0500 1.6198 1600011a 0 2.4699E-4 -14.900 273.53 -6.0500 -7.57.53 1600011a 0 -14.900 273.53 -6.0500 -7.57.53 -7.57.53 161001 0 -14.900 27.97.53 -	18000110 0 239382-4 -14.900 227.01 5.0500 1.5724 1602811b 0 5.27442-4 14.900 273.53 8.0500 1.8274 1602811b 0 2.249382-4 -14.900 273.53 8.0500 1.8198 1602811b 0 2.249382-4 -14.900 273.53 8.0500 1.8198 1602011a 0 2.49382-4 -14.900 273.53 8.0500 1.8198 160211a 0 2.49382-4 -14.900 273.53 8.0500 1.8198 160211a 0 2.49382-4 -14.900 273.53 8.0500 1.8198 160211a 0 0 2.49382-4 -14.900 273.53 8.0500 1.8198 160211a 14.900 2.73.53 8.0500 1.8198 1.8198 1.8198 160211a 14.900 2.73.53 8.0500 1.8198 1.8198 14.938 14.900 2.73.53 8.0500 1.8198 1.8198 13:13:12									
Image: Second	1002011b 0 52244E-4 14.900 273.53 6.0500 1.8271 1500011a 0 2.4699E-4 14.900 273.53 8.0500 1.8199 1500011a 0 2.4699E-4 14.900 2.0500 1.8199 1500011a 0 2.4699E-4 14.900 2.8199 1500011a 0 2.4699E-4 14.900 2.8199 1500011a 0 2.4699E-4 14.900 2.8199 1500011a 0 2.4699E-4 14.900 2.8199 1500011a 0 2.4698E-4 14.900 2.8199 15000000000000000000000000000000000000									
Iteration 0 2.4699E-4 -14.900 273.53 8.0500 1.6198 Iteration	160011a 0 2.4699E-4 -14.900 273.53 8.0500 1.6198									
COOAnalysis aida-2 Etod2 Etod2 Etod2 In mice Etod2 In mice	Image: Solution of the solution	l litetot								
Edd2 myTuple i etdi i etdi i etdi i etdi i energy i celiD0 i mod	Brdz Implue			10000118	U	2.4099E-4	-14.900	273.55	0.0500	1.0190
		t energy cellD0								
		13:13:12 con								

Event Display

Event analysis in JAS?

