brainstorming meeting and subsequent brainstorming at UCL. are contained. It is partly a copy of Paul's ECFA talk, the minutes from the for a data acquisition system for a calorimeter at the future linear collider. It is not yet a technical note nor a proposal draft to the funding agency; both This note currently describes all thoughts and ideas on the subject of R&D

- http://www-zeus.desy.de/~wing/calice.pdf
- Groups: Cambridge(?), Edinburgh(?), Imperial, Manchester(?), UCL, ...?

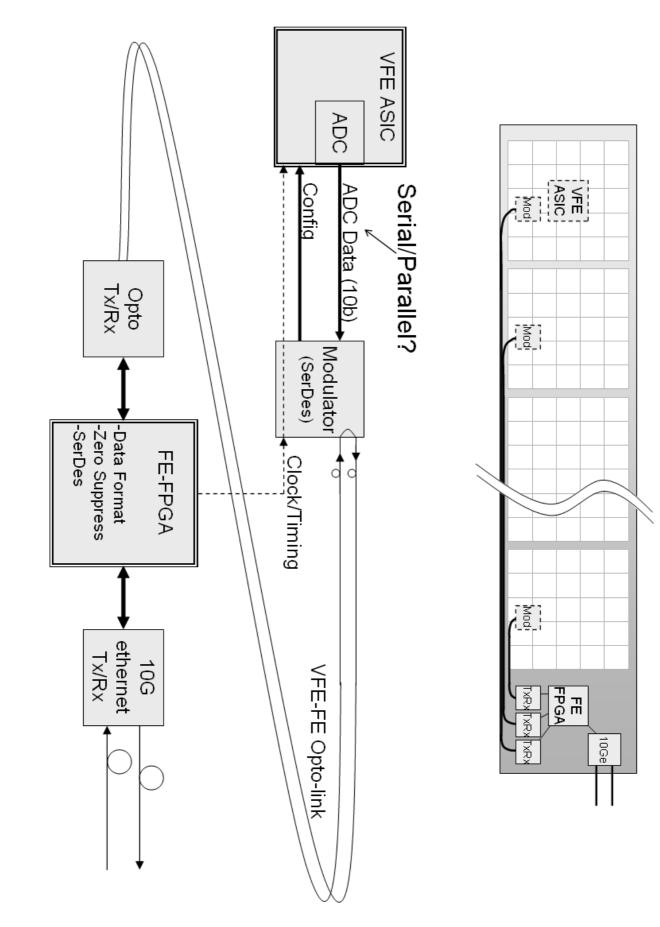
Matthew Wing (UCL), on behalf of the DAQ group

Outline of DAQ workpackage

Suggested workpackages

- DAQ 1: VFE to FE VFE interface, FE board
- DAQ 2: FE to off-detector Optical network, switching, control and clock distribution
- DAQ 3: Off-detector receiver PCI card
- DAQ 4: Off-detector farm PC issues, software and optimisation for physics

DAQ 1: VFE to FE


- 1. Neither is done in the VFE
- 2. Only the ADC is done in the VFE
- 3. Only the threshold is done in the VFE
- 4. Both are done in the VFE

MAPS suppression in FPGA at FE; 4) is better due to lower rates and similarity with Consider 2) and 4) worthy of further R&D: 2) is better due to threshold

also be plugged in Build a mock data transfer (test) system; any new development (e.g. MAPS) can

Demonstrate workability for both ECAL and HCAL.

Use commercially available products.

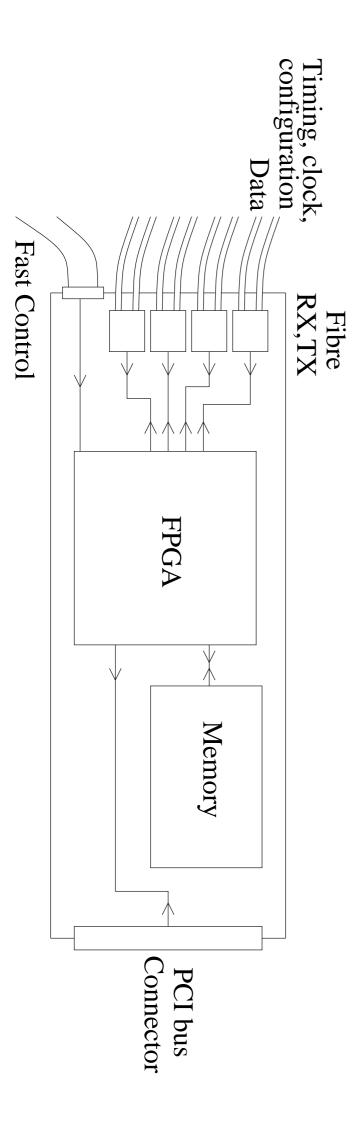
DAQ 2: FE to off-detector

- A fibre point-to-point to a PCI card.
- A fibre directly connected to a network no currently available network switch could sustain the throughput required.

Concentrating on the fibre point-to-point to a PCI card:

Fibre initially passes through a passive router which checks which PCs are alive.

Geographically close information sent to the same PCI card to allow for clustering in the PCI card.

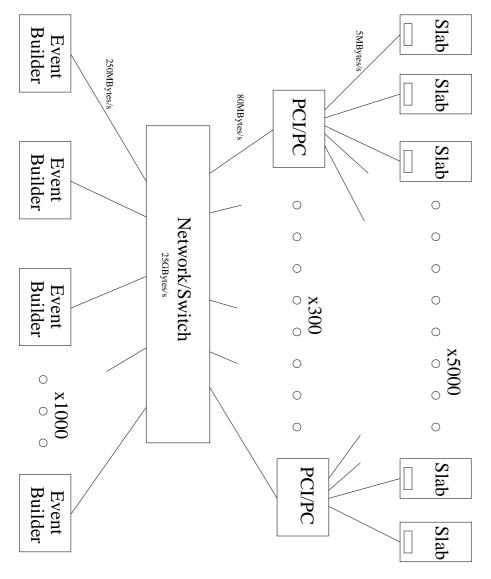

Again build a test system.

DAQ 3: Off-detector receiver

Standard PC with a PCI Express bus. PCI Express cards: 32 lanes, each 2.5 Gbit/s in each direction.

shared with simulation. Data reduction on card - local clustering and removing isolated hits. To by

How does the clocking work? R&D project.



DAQ 4: Off-detector farm

PC reliability: 1 our of 200 goes per day. How many spares needed?

Software and optimisation for physics.

Transfer via network switch to event builder.

Input is gratefully received now and will have a meeting of interested parties soon.

Name	Position	Institute	Funding	2005/6	2006/7	2007/8
M. Goodrick(?)	Engineer	Cambridge	PPARC (RG)			
D. Ward(?)	Academic	Cambridge	HEFCE			
Ċ.	ċ	Edinburgh				
P. Dauncey	Academic	Imperial	HEFCE	Ś	?	Ś
O. Zorba	Engineer	Imperial	PPARC (RG)	·>	·>	?
New RA	RA	Imperial	PPARC (new)	?	?	.>
R. Barlow(?)	Academic	Manchester	HEFCE			
R. Hughes-Jones(?)	Engineer	Manchester	PPARC (RG)			
S. Kolya(?)	Engineer	Manchester	PPARC (RG)			
M. Lancaster	Academic	UCL	HEFCE	0.2	0.2	0.2
M. Postranecky	Engineer	UCL	PPARC (RG)	0 <u>.</u> 3	0.3	0.5
M. Warren	Engineer	UCL	PPARC (RG)	0.3	0.5	0.5
M. Wing	Academic	UCL	HEFCE	0.3	0.3	0.3
New RA	RA	UCL	PPARC (new)	0.6	0.6	0.6

Next steps

Finalise the R&D programme and costings and finalise this table.