Concepts, Calorimetry and PFA

Mark Thomson University of Cambridge

<u>This Talk:</u>

ILC Physics/Detector Requirements Detector Concepts and optimisation Calorimetry at the ILC Particle Flow Status PFA in near future Conclusions

Calice-UK 9/9/2005

Mark Thomson

ILC Physics / Detector Requirements

Precision Studies/Measurements

- « Higgs sector
- **SUSY** particle spectrum
- « SM particles (e.g. W-boson, top)
- « and much more...

Difficult Environment:

- High Multiplicity final states
 often 6/8 jets
- « Small cross-sections e.g. σ(e⁺e⁻→ZHH) = 0.3 fb

 \sqrt{s} (GeV)

- Detector optimized for precision measurements in difficult environment
- Only 2 detectors (1?) make sure we choose the right options

ILC Detector Requirements

- (for missing energy signatures e.g. SUSY)
- Sufficient timing resolution to separating events from different bunch-crossings

Must also be able to cope with high track densities due to high boost and/or final states with 6+ jets, therefore require:

- High granularity
- Good pattern recognition
- Good two track resolution

Detector Concepts

- « COMPACT: Silicon Detector (SiD)
- « TESLA-like: Large Detector Concept : (LDC)

« LARGE : GLD

	VTX	Tracker	ECAL	HCAL
SiD	yes	Si	SiW	?
LDC	yes	ТРС	SiW	?
GLD	yes	ТРС	Scint-W	Scint-Pb

What is the purpose of the Concepts ?

- « Explore phase space for ILC detector design
- « Produce costed "conceptual design reports" by end of 2006
- « Place detector R&D (e.g. CALICE) in context of a real detector
- « Perform some level of cost-performance optimisation
- Possible/likely to be nucleus around which real collaborations form

Relevance to CALICE ?

- « SiW ECAL is not cheap !
 - $\ensuremath{\mathrm{s}}$ big cost driver for overall detector
- « Can it be justified ?
 - s are the physics benefits worth the cost
 - s do we need such high granularity
- would very high granularity help ? s MAPS

These are important questions. The concept studies will hopefully provide the answers

What to Optimize ?

The Big Questions (to first order):

CENTRAL TRACKER

« TPC vs Si Detector

« Samples vs. granularity – pattern recognition in a dense track environment with a Si tracker ?

ECAL

- Widely (but not unanimously) held view that a high granularity SiW ECAL is the right option
- **« BUT it is expensive**
- Need to demonstrate that physics gains outweigh cost
- « + optimize pad size/layers

HCAL

Key Angle A

SIZE

- Physics argues for:
 large + high granularity
- « Cost considerations:

small + lower granularity

« What is the optimal choice ?

Aside: the GLD ECAL

Initial GLD ECAL concept:

- « Achieve effective ~1 cm x 1cm segmentation using strip/tile
- « Strips : 1cm x 20cm x 2mm
- « Tiles : 4cm x 4cm x 2mm
- « Ultimate design needs to be optimised for particle flow
 - + question of pattern recognition in dense environment

Calorimetry at the ILC

- Much ILC physics depends on reconstructing invariant masses from jets in hadronic final states
- Kinematic fits won't necessarily help Unobserved particles (e.g. v),
 + (less important ?) Beamstrahlung, ISR
- « Aim for jet energy resolution ~ $\Gamma_{\rm Z}$ for "typical" jets
 - the point of diminishing return
- « Jet energy resolution is the key to calorimetry
- The visible energy in a jet (excluding v) is:

60 % charged particles : 30 % γ : 10 % K_L,n

The Energy Flow/Particle Flow Method

• Reconstruct momenta of individual particles avoiding double counting

Charged particles in tracking chambers Photons in the ECAL Neutral hadrons in the HCAL (and possibly ECAL)

« Need to separate energy deposits from different particles

Calice-UK 9/9/2005

Mark Thomson

Jet energy resolution:

Best at LEP (ALEPH): $\sigma_{E}/E = 0.6(1+|\cos\theta_{Jet}|)/\sqrt{E(GeV)}$

« Jet energy resolution directly impacts physics sensitivity

Reconstruction of two di-jet masses allows discrimination of WW and ZZ final states **Often-quoted Example:**

If the Higgs mechanism is not responsible for EWSB then QGC processes important e⁺e⁻→vvWW→vvqqqq, e⁺e⁻→vvZZ→vvqqqq

ILC GOAL:

 $\sigma_{\rm F}/E = 0.3/\sqrt{E(GeV)}$

THIS ISN'T EASY !

 « EQUALLY applicable to any final states where want to separate W→qq and Z→qq ! « Best resolution achieved for TESLA TDR : $0.30\sqrt{E_{iet}}$

Component	Detector	Frac. of jet energy	Particle Resolution	Jet Energy Resolution
Charged Particles(X [±])	Tracker	0.6	10 ⁻⁴ E _X	neg.
Photons(γ)	ECAL	0.3	0.11√E _γ	$0.06\sqrt{E_{jet}}$
Neutral Hadrons(h ⁰)	HCAL	0.1	0.4√E _h	0.13√E _{jet}

morgunov

 In addition, have contributions to jet energy resolution due to "confusion" = assigning energy deposits to wrong reconstructed particles (double-counting etc.)

$$\sigma_{jet}^{2} = \sigma_{x\pm}^{2} + \sigma_{\gamma}^{2} + \sigma_{h^{0}}^{2} + \sigma_{confusion}^{2} + \sigma_{threshold}^{2}$$

Will come back to this later

 Single particle resolutions not the dominant contribution to jet energy resolution !

granularity more important than energy resolution

Calorimeter Requirements

Particle flow drives calorimeter design:

- Separation of energy deposits from individual particles
 - small X_0 and $R_{Moliere}$: compact showers
 - high lateral granularity : O(R_{Moliere})
- Discrimination between EM and hadronic showers
 - small X_0 / λ_{had}
 - longitudanal segmentation
- « Containment of EM showers in ECAL

Some COMMENTS/QUESTIONS:

- R_{Moliere} ~ 9mm for solid tungsten
 - gaps between layers increase effective R_{Moliere}
 - an engineering/electronics issue
- R_{Moliere} is only relevant scale once shower has developed
 - in first few radiation lengths higher/much higher
 - lateral segmentation should help
- + Many optimisation issues !

ECAL Granularity : is the R_{Mol} the correct scale ?

Personal View:

- Moliere radius is only relevant towards shower max
- At start of shower (ECAL front) much higher granularity may help
 MAPS?
- « At end of shower can probably reduce granularity

- e.g. electrons in SiW with 1 mm x 1 mm segmentation
- Higher granularity clearly helps
- particularly at shower start

Another example: $\tau^+ \rightarrow \rho^+ \nu \rightarrow \pi^+ \pi^0$

General view now leaning towards higher granularity
 IF SiW ECAL cost driven mainly by Si cost – no problem

Hadron Calorimeter

Highly Segmented – for Energy Flow

- Longitudinal: ~10 samples
- ~5 λ_{had} (limited by cost coil radius)
- Would like fine (1 cm² ?) lateral segmentation (how fine ?)
- For 5000 m² of 1 cm² HCAL = 5x10⁷ channels cost !

Two(+) Options:

- Tile HCAL (Analogue readout) Steel/Scintillator sandwich Lower lateral segmentation 5x5 cm² (motivated by cost)
- « Digital HCAL
 - High lateral segmentation 1x1 cm²
 - digital readout (granularity)
 - RPCs, wire chambers, GEMS...
- « Semi-Digital option ?

The Digital HCAL Paradigm

• Sampling Calorimeter:

Only sample small fraction of the total energy deposition

• Energy depositions in active region follow highly asymmetric Landau distribution

Particle Flow Status

- Particle flow in an ILC highly granular ECAL/HCAL is very new s No real experience from previous experiments
- We all have our personal biases/beliefs about what is important s BUT at this stage, should assume we know very little
- « Real PFA algorithms vital to start learning how to do this type of "calorimetry"
 d=0.15BR²/p_t

Example:

- Often quoted F.O.M. for jet energy resolution: BR²/ σ (R=R_{ECAL}; σ = 1D resolution) i.e. transverse displacement of tracks/"granularity"
- « Used to justify (and optimise) SiD parameters
- « BUT it is almost certainly wrong !

Size more important - spreads out energy deposits from all particles

R more important than B

So where are we?

- « Until recently we did not have the software tools to optimise the detector from the point of view of Particle Flow
- « This has changed !
- « The basic tools are mostly there:
 - « Mokka : now has scalable geometry for the LDC detector
 - « MARLIN: provides a nice (and simple) reconstruction framework
 - « LCIO: provides a common format for worldwide PFA studies
 - SLIC: provides a G4 simulation framework to investigate other detector concepts (not just GLD, LDC and SiD)
 - Algorithms: in MARLIN framework already have ALGORITHMS for TPC tracking, clustering + PFA

We are now in the position to start to learn how to optimise the detector for PFA

Some Caution:

- « This optimisation needs care: can't reach strong conclusions on the basis of a single algorithm
- « A lot of work to be done on algorithms + PFA studies
- « Not much time : aim to provide input to the detector outline

<u>BUT</u> : real progress for Snowmass (mainly from DESY group)

Perfect Particle Flow

What contributes to jet energy resolution in ideal "no confusion" case (i.e. use MC to assign hits to correct PFOs) ?

$e^+ e^- \rightarrow$	$Z^0 \rightarrow q \overline{q}$	at 91.2Ge	Studies by V P.Krstonosic		
	σ [GeV]	σ [GeV]	σ [GeV]	σ	
Effect	separate	not joined	total $(\%/\sqrt{E})$	to total	
$E_v > 0$	0.84	0.84	0.84 (8.80%)	12.28	
Cone < 5°	0.73	1.11	1.11(11.65%)	9.28	
$P_t < 0.36$	1.36	1.76	1.76(18.40%)	32.20	
σ _{HCAL}	1.40	1.40	2.25(23.53%)	34.12	
σ _{ECAL}	0.57	1.51	2.32(24.27%)	5.66	
M _{neutral}	0.53	1.60	2.38(24.90%)	4.89	
M _{charged}	0.30	1.63	2.40(25.10%)	1.57	

Missed tracks not a negligible contribution !

Example : full PFA results in MARLIN (Alexei Raspereza)

NOTE: currently achieving $0.40/\sqrt{E}$

« During Snowmass attempted to investigate PFA performance vs B-field for LDC

Not yet understood – more confusion in ECAL with higher field ? But could just be a flaw in algorithm....

Calice-UK 9/9/2005

Mark Thomson

PFA Studies in Near Future

(Steve Magill, Felix Sefkow, Mark Thomson and Graham Wilson)

Proposal:

- « Arrange monthly PFA phone conferences
- « Forum for people form to present/discuss recent progress
- « Goal : realistic PFA optimisation studies for Bangalore (and beyond)
- « Try and involve all regions : need to study EACH detector performance with multiple algorithms
- « First xday of each month 1600-1800 (CET)
 - not ideal for all regions but probably the best compromise
- « I will start to set up an email list next week...
 - * We can make real and rapid progress on understanding what really drives PFA
 - Provide significant input into the overall optimisation of the ILC detector concepts

- UK perspective: we could make a big impact here
- BUT need to start soon...
- **To date, UK input to detector concepts very limited !**

At Snowmass, identified the main PFA questions...

Prioritised PFA list

(from discussions + LDC, GLD, SiD joint meeting)

The A-List (in some order of priority)

- 1) B-field : is BR² the correct performance measure (probably not)
- 2) ECAL radius
- 3) TPC length
- 4) Tracking efficiency
- 5) How much HCAL how many interactions lengths 4, 5, 6...
- 6) Longitudinal segmentation pattern recognition vs sampling frequency for calorimetric performance
- 7) Transverse segmentation
- 8) Compactness/gap size
- 9) HCAL absorber : Steel vs. W, Pb, U...
- **10)** Circular vs. Octagonal TPC (are the gaps important)
- 11) HCAL outside coil probably makes no sense but worth demonstrating this (or otherwise)
- 12) TPC endplate thickness and distance to ECAL
- **13)** Material in VTX how does this impact PFA

<u>The B-List</u>

- 1) Impact of dead material
- 2) Impact (positive and negative) of particle ID (e.g. DIRC)
- 3) How important are conversions, V⁰s and kinks
- 4) Ability to reconstruct primary vertex in z

Goals for Vienna:

- « B-field dependence:
 - **Requires realistic forward tracking (HIGH PRIORITY)**
- Radial and length dependence:
 " Ideally with > 1 algorithm

« Complete study of "perfect particle flow"

- « Try to better understand confusion term
 - Breakdown into matrix of charged-photon-neutral hadron
- Study HCAL granularity vs depth
 - already started (AR)
 - how many interaction lengths really needed ?
- **« ECAL granularity**
 - how much ultra-high granularity really helps ?
 - » granularity vs depth

What can we do....

- « Developing PFA algorithms isn't trivial !
- « BUT to approach the current level.....
- « Started writing generic PFA "framework" in MARLIN
- Designed to work on any detector concept

Possible to make rapid progress !

Conclusions

- « Calorimetry at ILC is an interesting problem
- **«** Design driven by Particle Flow
- « Only just beginning to learn what matters for PFA
- **«** Significant opportunity for UK to make a big impact
- « BUT need to start very soon