Paths between VFE Chips and the FE Chip :

- . Clock and Control to VFE chips
- Data from VFEs to FE chip
- . Readout Token and Monitoring
- Constraints: 1.2 to 1.8 m slab length tight power budget

Technology and Architectural Choices:

- . Copper, or must we go to Optical ?
- CMOS, LVDS (,CML,,,)?
- . Composite Clock and Data ? ... Clock recovery, Clock-Data encoding

WP2.2 - Study of data paths on ECAL

Slab

UNIVERSITY OF CAMBRIDGE

- . Shared lines or point-to-point ?
- Buffering, redundancy ?

SLAB Design options include :

- Single 1.8 m PCB .. Can this be manufactured ?
- . Multiple Panels "stitched" together ?
- Flexible circuit ?
- VFE ASIC factors: these strongly effect the on-slab communications :
 - . # pads, available functions: LVDS, SERDEC, clock recovery ?
 - Bunch-train buffering ?
 - . Zero suppression ?

WP2.2 : Aspects of Work

Paper Studies :

- . Estimating data flows for different beam scenarios and VFE functionalities
- Possible PHYs : e.g. $Z_0 \& C_0$ of feasible PCB traces, pre-emphasis,,,
- . Proposing optimal architectures
- . Interaction with ASIC and slab design groups

Experimental Work :

- . Design and build of test PCB with "best-guess" solutions and variants
- Evaluate
- . Interaction with ASIC and slab design groups (again)
- . Tune model
- . Iterate

Conclusions :

- . Re-think ?
- Arrive at viable design both workable and affordable ?

WP2.2 : Overview

There are lots of VFE ASICs on a slab: . A 240 x 120 mm panel has 16 on each side

WP2.2 : Overview

Distributing the Clock and gathering the Data is non-trivial: . There will be up to 7 panels per slab

WP2.2 : Data

Rates:

.Very difficult to pin down what the rates will be - depends on assumptions about occupancy and, particularly about zero suppression

- . The current design of ECAL VFE may only deliver a few Mbits/s per slab
- Other scenarios deliver 120 Mbits/s even with zero-suppression

		Param	leter			
		# Bytes per Pad (non-Z Suppressed)			2	
		# Bytes per Pad (Zero Suppressed)			4	
		Zero Suppression factor			100	
		Scenarios				
		ReadOut:	R1	R2	R3	
		Beam:	B1	B1	B1	
Parameter		CALICE:	<i>C</i> 61	<i>C</i> 62	<u>C63</u>	
# BX per Bunch			4886	4886	4886	
# BX per Sec]		19544	19544	19544	
# Pads per Average Slab			4000	3840	15360	
# Bytes per BX			8000	7680	30720	
# MBytes per Bunch Train	Per Slab		39.1	37.5	150.1	
# MBytes per sec	non-Z Suppress	sed	156.4	150.1	600.4	
# Mbits per sec]		1564	1501	6004	
# Bytes per BX			160.0	153.6	614.4	
# MBytes per Bunch Train	Per Slab		0.78	0.75	3.00	
# MBytes per sec	Zero Suppressed		3.13	3.00	12.01	
# Mbits per sec]		31.3	30.02	120.08	

WP2.2 : Data Paths

. The contemplated board build makes things difficult:

- . 8 layers in total thickness 600 μm !
- means high capacitance tracks: ~ 300 pF/m for 150 µm track width
 - makes CMOS driving of long tracks noisy and power hungry
- . and means low ZO: ~ 60 Ω

. gives low voltage swings for LVDS (or similar) drivers

PCB Transmission Lines UNIVERSITY OF CAMBRIDGE

- 64 mu (2.5 thou) PCB thickness
- . 50 mu (2 thou) pre-preg thickness
- 17.4 mu (0.7 thou) = 0.5 oz Cu layer

	Trace width	СО	ZO
	(mum)	(pF/m)	(Ohm)
3	200	373	16.5
-	150	305	20.3
	100	229	27.1
<u> </u>	75	±160	32.8

WP2.2 : Data Paths Architectures

Here are some schemes:

- . Common differential readout line
- . Collection among group of VFEs with transfer to common diff. line
- Collection among group of VFEs with transfer to private diff. line
- . Daisy chained path: for lower rates this may work well with CMOS lines

WP2.2 - Other On-Slab Signals

There will be other signals to pass round the slabs:

- . Token to initiate Readout
- . Having a readable panel ID would be very useful
- . Temperature and other monitoring

To test out these approaches and features, VFE and FE Test Panels are being built

CAMBRIDGE

Test Panels Version 0

Only need one row of Pseudo VFEs (PVFEs) Each PVFE emulates 2 VFEs

WP2.2 - Test Slab

UNIVERSITY OF CAMBRIDGE

A number of these test panels will be strung together to form a Test Slab

- . not all need be populated to reduce the cost
- . many options may be tried by changing the pVFE firmware
- many more testable by moving "zero-ohm links" on the PCB
- downloadable data
- . data generation using PRN on the $\mathsf{pVFE}\xspace$ chips
- . Bit Error Rate Testing (BERT) in FE FPGA
- . USB to host PC for control and access to performance parameters

Multiple Test Panels forming a Test Slab

Terminator Panel

Summary and Objectives

Plan:

- emulate multiple VFE chips on long, thin PCBs
- study the transmission behaviour
- optimise VFE PCB wrt the data-rate requirements

Needs:

- Segmented Test Slab PCBs
- FPGAs emulating VFE chips: pVFEs
- FE boards for distribution and reception of clock, controls, data etc. **Objectives:**
- . to contribute to the CALICE slab design
- to make our components (such as the FE design and test tools) available
 to the CALICE programme

WP2.2 - Beyond Here

Back-up Slides From Munich Presentation

WP2.2 : Clock and Control

Distributing the Clock and Control Signals:

- . Separate or Encoded ?
 - . latter good for slew and reduces lines
 - ... but needs CDR in ASIC, and may introduce jitter
- Beam Clock is 5 MHz
- . Use 4 long lines (or pairs of lines)?
- Each has 1 Source TX, multiple RXs, single termination
- . Most dissipation in TX at slab end

WP2.2 - PCB Status

Features thin (64mum) layers and narrow (75mum) traces

Traces for various clock distrib'n schemes and/or readout architectures incorporated in design

Rows of 4 FPGAs/board

Every FPGA mimics 2 VFE chips

ØBoard schematics are 'finished'ØPCB layout now completed

WP2.2 - pVFE FPGA progress:

- Simulation of actual VFE VHDL code using VFE technology specific SRAM
- Modification of VFE code and simulation using FPGA SRAM
- ^a VFE chips incorporated in VHDL testbench
- ^a Suggestions incorporated in VFE VHDL code V.2
- ^a Single VFE chip+testbench running on Xilinx Spartan3E FPGA
- Two chips+testbenches fitted into single FPGA (X3S500E testboard)
- Design fits into envisaged pVFE FPGA and yet leaves room for extras:
 - ^a 25% of logic used
 - ^a 83% of block RAM used.
- ^a Preliminary code available for alternative pVFE

implementation