CALICE Testbeam Program 2006

G.Mavromanolakis, University of Cambridge

Outline

► General

- Overview per testbeam period
 : DESY May
 : CERN Jul
 : CERN Aug
 : CERN Oct
- ► Summary

____CALICE-UK Meeting, Manchester

General

► . particle flow paradigm

: highly granular EM and HADR calorimeters to allow very efficient pattern recognition for excellent shower separation and pid within jets to provide excellent jet reconstruction efficiency

► . CALICE ECAL and HCAL prototype studies

- : debug technology/detector concept(s)
- : detector characterisation
- : test "particle flow paradigm", interplay between hard/soft-ware
- : test-validate-improve simulation codes and shower packages

Testbeam Program 2006

DESY, 22 May - 31 May

: ECAL testbeam with electrons at 1-6 GeV

CERN, 28 Jul - 9 Aug

- : ECAL testbeam with electrons at higher energy
- : HCAL, TCMT commissioning

CERN, 24 Aug - 3 Sep

: mainly HCAL technical run with electrons/pions

CERN, 12 Oct - 24 Oct

: combined (ECAL+HCAL+TCMT) physics run with electrons/pions

ECAL testbeam at DESY, May 2006

Si/W prototype

 24 layers (10 at 1.4mm W + 10 at 2.8mm + 4 at 4.2mm) equipped with 18 × 12 matrix of active Si cells, cellsize: 1 × 1 cm², total: 5184 channels

in summary (configurations: position × energy × angle)

- : testbeam with electrons
- position scan (center edge corner of wafers) energy scan (1, 1.5, 2, 3, 4, 5, 6 GeV) angle scan (0°, 10°, 20°, 30°, 45°)

: total: \sim 8 Mevents

ECAL board

(G.Gaycken)

Testbeam at DESY with electrons

- ECAL at 0° three position points
- energy scan (1, 1.5, 2, 3, 4, 5, 6 GeV)
- 100k events per sample

Testbeam at DESY with electrons

- angle scan (10°, 20°, 30°, 45°) two position points
- energy scan (1, 1.5, 2, 3, 4, 5, 6 GeV)
- 100k events per sample

Remarks

► - Tracker

: 4 drift chambers with non-flammable gas

Beam/trigger quality

- : empty/garbage events
- : multiparticle events

► • DAQ

: first test of combined ECAL+HCAL readout

Response to electrons

Response to electrons

> a lot of double-particle events observed

Shower longitudinal profile

Hits per layer

E per layer

b some layers show high noise

ECAL testbeam at CERN, Aug 2006

Si/W prototype

 30 layers (10 at 1.4mm W + 10 at 2.8mm + 10 at 4.2mm) equipped with 18 × 12 matrix of active Si cells, cellsize: 1 × 1 cm², total: 6480 channels

► run plan

- : ECAL testbeam with electrons at higher energy
- : HCAL+TCMT commissioning
- : beam tuning

CANCELLED

: CERN suffered a severe power failure, all testbeams cancelled

CALICE testbeam at CERN

Transverse granularity

ECAL 18 \times 18 cm² Si cells of 1 \times 1 cm²

HCAL 100imes100 cm 2

scint.tiles of 3×3 , 6×6 , 12×12 cm²

|--|

HCAL testbeam at CERN, Aug 2006

► · Particle ID

: Cherenkov counter, 1 bit signal

► - Tracker

: 3 XY chambers

Calorimeters

- : ECAL: 30 layers, 6480 channels
- : HCAL: 15 modules, 3240 channels
- : TCMT: 8 modules, 160 channels

HCAL testbeam at CERN, Aug 2006

► • HCAL alone, no ECAL in front

- : electron beam, energy scan (6, 10, 15, 20, 30, 40, 45 GeV)
- : pion beam, energy scan (6, 10, 15, 20, 30, 40, 50, 60, 80 GeV)

► · ECAL+HCAL

: pion beam, energy scan (30, 40, 50, 60, 80 GeV)

► · ECAL

: electron beam, energy scan (10, 15, 20, 30, 40, 45 GeV) angle scan (0°, 30°, 45°)

samples of 500-600k events collected

HCAL e/π ratio

> HCAL prototype shows good compensating behaviour

HCAL response with/without ECAL in front

Shower longitudinal profile

b some layers with high noise

only odd layers equipped and readout

ECAL vs HCAL response

> as expected strong anti-correlation observed

Combined testbeam at CERN, Oct 2006

► · Particle ID

: Cherenkov counter, 1 bit signal

► - Tracker

: 3 XY chambers

Calorimeters

- : ECAL: 30 layers, 6480 channels
- : HCAL: 23 modules, 4968 channels
- : TCMT: completed, 16 modules, 320 channels

Combined testbeam at CERN, Oct 2006

► · ECAL+HCAL+TCMT

: pion beam, energy scan (6, 10, 15, 20, 30, 40, 50, 80 GeV) samples of 500k events

► • ECAL

: positron beam, energy scan (10, 16, 15, 18, 20, 30, 50 GeV) samples of 300k events

► • HCAL alone, no ECAL in front

: positron beam, energy scan (10, 15, 20, 30, 50 GeV) samples of 600k events

► parasitic run

: 25M muon events collected

CALICE testbeam at CERN

Run 300545:0 Event 1060 Time: 13:25:33:379:785 Sat Oct 14 2006 ECAL Hits: 58 Energy: 62.7564 mips HCAL Hits: 225 Energy: 734.653 mips TCMT Hits: 41 Energy: 117.65 mips

π^- 30 GeV

ECAL threshold = 0.5 mip HCAL threshold = 0.5 mip TCMT threshold = 0.7 mip

G.Mavromanolakis, CALICE-UK Meeting, Manchester

Shower longitudinal profile

ECAL

HCAL

ECAL vs HCAL vs TCMT response

ECAL response to positrons

> most runs with nice and typical behaviour

b at 30 GeV run response spoiled by noisy/unstable layers

Stability problems

> example of ECAL stability problem

CALICE testbeam at CERN

(ECAL Display not to scale)

muon

ECAL threshold = 0.5 mip

Summary

CALICE Testbeam Program 2006

- : several rounds of technical and physics runs at DESY and CERN
- : huge amount of data collected
- : possible only with huge and constant effort of all involved

Happy Data Analysis

- : not so trivial task
- : again constant effort of all involved required

CALICE ECAL prototype

full Si/W prototype (24 X_0)

- \triangleright 30 layers \times 18 cm \times 18 cm, interleaved with 0.5 mm Si pads
- **b** W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer
- \triangleright readout by 1 \times 1 cm² cells, total: 9720 channels

Si Wafer : 6×6 pads of detection (10×10 mm²)

CALICE-ECAL testbeam at DESY

ECAL

layout at DESY T21

DriftChambers and installation courtesy of Tsukuba Univ. and Kobe Univ.