

Status of Tracking at DESY

Paul Dauncey, Michele Faucci Giannelli, Mike Green, Hakan Yilmaz, Anne Marie Magnan, George Mavromanolakis, Fabrizio Salvatore

- New software structure:
 - Include DB interaction
- Measurement of drift velocity and DC off sets
- Intrinsic chamber resolution in the MC
- Comparison of MC with Data

The tracking software

Royal Holloway University of London The trac

- Several suggestion, no definitive answer.
 - Scatter plot
 - Ratio
 - Sum of consecutive chambers
 - Recursive methods
 - . . .
- The fact is we lack of external constraint. Some approximations are needed.

- First method abandoned
 fit a 2D Gauss and take the axis.
- Second method (X only)

Run	Energy	DC1	DC2	DC3	DC4
230097	3	0,0305	0,0284	0,0346	0,303
230098	1	0,031	0,0282	0,0386	0,0292
230099	2	0,0305	0,0284	0,035	0,0303
230100	4	0,0305	0,0282	0,0345	0,0302
230101	6	0,0303	0,0282	0,0342	0,0301
230104	5	0,0301	0,0278	0,034	0,0299
230255	1,5	0,0299	0,0278	0,0339	0,0294

• Third method, v1=v2 and v3=v4 (Y too)

0,0296
0,0303
0,0327
0,0273

DC1-2 average = 0.0300

DC3-4 average = 0.0300

- Error matrix calculated from MC events to evaluate the multiple scattering,
 - intrinsic error is set to 0.4 mm for the moment
- Try assuming layer 0 and 3 have the same drift velocity
 - Start assuming drift velocity of 0.03mm/ns in each
- Interpolate inwards to determine constants of layers 1 and 2
 - Use full fit and shift offsets and drift velocities to get best probability values
 - Effectively gives relative drift velocities to average of layer 0 and 3
- 1D Track can extrapolate the point at any Z
 - Error is propagated using the error matrix from MC

~40% of events have no track

• How much is due to noisy beam conditions at DESY?

• Need to compare with ECAL energy next

- ~20% of tracks have four hits
 - For efficiency see later

Royal Holloway University of London

Number in X

40000E

• It is possible to evaluate the intrinsic resolution constraining the Chi probability to be flat.

- Try different intrinsic resolutions in fit and compare slopes
 - Both before and after realignment (reevaluation of drift velocity and misalignment)

Value for zero slope approx 0.55mm before, 0.45mm after

- It is possible to evaluate the intrinsic resolution plotting the errors as a function of the energy.
 - The errors are evaluated using the formula

$$\hat{\sigma} = \frac{\text{mode}[S]}{\sqrt{n_d - 1}}$$

- With S defined as

Royal Holloway

$$S = \sqrt{\sum_{i=1}^{n} (y_i - f(x_i; \theta))^2}$$

 $-\chi^2$ cannot be used since n_d is 2

$$\hat{\sigma} = \sqrt{\frac{\text{mode}[S^2]}{\sqrt{n_d - 2}}}$$

MC prediction

• Data

Royal Holloway University of London

Intrinsic resolution(2)

• Increasing the errors

• Efficiencies have been evaluated last year before the test beams, this is the result

- All chambers have ~75-85% efficiency, this means all wire have an efficiency ~90%
 - Chamber #3 that has 60% efficiency due to the Y wire that is only ~65% efficient
- This result can be compared with the "effective efficiency" from the number of successfully reconstructed tracks

$$\varepsilon^{4} = \frac{\# recontructed _ tracks}{\# total _ events} = 20\%$$

• Giving an efficiency of 70% for each wire

MC-Data comparison

- Software structure is defined, minor issue to be decided.
- MC simulation and digitization is available
- Several method to evaluate drift velocity and other constants
 - All are in good agreement
- More studies are undergoing to improve these values
- Tracking is almost ready,
 - this week last test will be performed to have the tracking installed and debugged on Roman machine

$$\begin{cases} v_{1}t_{1} + v_{2}t_{2} = L \\ v_{2}t_{2} + v_{3}t_{3} = L - Off_{DC} \\ v_{3}t_{3} + v_{4}t_{4} = L \\ v_{1}t_{1} + v_{4}t_{4} = L - Off_{DC} \\ X_{ECAL} = v_{1}t_{1} - Off_{ECAL} \\ X_{ECAL} = v_{2}t_{2} - Off_{ECAL} \\ X_{ECAL} = v_{3}t_{3} - Off_{ECAL} - Off_{DC} \\ X_{ECAL} = v_{4}t_{4} - Off_{ECAL} - Off_{DC} \end{cases}$$

- All quantity have to be considered averaged
- Offset between DC1-DC2 and DC3-DC4 is 0.2mm, negligible on first approximation
- Y should be easier because of the better alignment:
 - OffY_{DC} should be very small

Distributions

