Towards an ECAL e⁻ analysis paper?

David Ward

Would like to aim to progress from LCWS note to published paper(s). Envisage up to 4 papers:

- *1. Hardware, calibration, technical performance (gain, noise, stability etc). Anne-Marie to coordinate.
- 2-4. Electron response
- Schedule drafts by the end of 2007???
- Basic topics much as in the LCWS note.
- Several problems to be addressed before we can be ready. Will mainly discuss these.
- Comments on systematics.

Calice-UK 20/09/07

Content of analysis papers?

C.Carloganu, DRW	*	Energy response
		dependence.
	*	Energy resolution
		 As a function of energy, angle, impact of gaps
Valeria, George, Nige	*	Shower longitudinal profile
	*	Shower transverse profile
		 Effective Molière radius
ſ	*	Position resolution
Paul, Hakan, Michele		 Using tracking
	*	Angular resolution
		 Using tracking
	*	2-shower separation
		 Using double events/superimposed events
	*	All of the above compared with MC simulation.

Calice-UK 20/09/07

ECAL problem areas

- There are several problematic areas, where we see discrepancies between data and Monte Carlo.
- Some at least may be partly interconnected.
 - Low pulse height hits
 - Number of hits.
 - Interwafer gaps (effect of guard rings etc)
 - Transverse shower shape (~ 10% higher in data)
 - Shower depth (understanding of beam line, upstream material?)
 - Mismatch of energy scale (~ 3%) between CERN and DESY

Low energy hits

Pre3 processing agrees with MC quite well down to 1.2 MIPs Pre4 processing (SIPS correction) gives extra hits; agrees less well with MC. Effect grows with increasing energy. Anne-Marie's MC digitization and reconstruction doesn't have any significant effect (next slide...). Similar in 2007 data; possibly a bit worse

UNIVERSITY OF CAMBRIDGE

Calice-UK 20/09/07

Effect of MC digitization (45 GeV)

Calice-UK 20/09/07

David Ward

CALLE UNIVERSITY OF

5

Correlated with shower position

Calice-UK 20/09/07

David Ward

UNIVERSITY

6

2006 c.f. 2007 - 30 GeV e⁻

HitMap of hits below 0.8 MIP

Number of hits (above threshold)

Calice-UK 20/09/07

David Ward

CALLE UNIVERSITY OF

9

Look at events in the high tail in data

Calice-UK 20/09/07

David Ward

CALICE

Calice-UK 20/09/07

Cut against double events

- ✤ Simple algorithm: form x-y projection of all 30 layers.
- Apply Threshold T
- Perform naïve nearest-neighbour clustering of cells above threshold.
- Find T_{max} below which two or more clusters first appear.
- Dramatic difference
 between data and MC
- ♦ Cut T_{max}<100 to
 remove (most) double
 events.

Compare with 2007 data (20 GeV)

Threshold for 2 clusters

Calice-UK 20/09/07

David Ward

CAMBRIDGE 13

Effect of cut against double showers

N Ecal hits > Thresh

Other energies?

N Ecal hits > Thresh

Calice-UK 20/09/07

David Ward

400

200

°b

200

300

400

500

CALICE CAMBRIDGE

600

100

Interwafer gaps; 30 GeV e-

Calice-UK 20/09/07

Dip vs. Layer; 30 GeV e⁻

Fit dip in energy vs y in each layer to a Gaussian. Plot fractional depth of dip, position and σ , for data and MC

Dip in MC still slightly deeper than in data

Beam inclined in data? Alignment issues?

Calice-UK 20/09/07

Radial energy distribution

David Ward

Calice-UK 20/09/07

Shower depth

•Shower depth consistently » 0.2-0.3 X₀ deeper in MC than data. • R.M.S. seems quite well modelled. •Suggests problem with modelling the beam line rather than the material of ECAL?

Calice-UK 20/09/07

Shower depth – effect of double shower cut

Hits in Layer 1 only (30 GeV e⁻)

N Ecal hits layer 1

E Ecal hits /MIPs layer 1

CALLE CAMBRIDGE 21

Calice-UK 20/09/07

Increase material in beam

E Ecal /MIPs layer 1

N Ecal hits layer 1

 Try increasing material in beam by 10% or 20% X₀ Technically done by doubling or trebling thickness of scintillators. Obviously too crude, but suggests $\sim 10-20\% X_0$ upstream material would be needed. Seems improbably much? •Emphasises the need to understand

Calice-UK 20/09/07

Uniformity across detector in 2007 data

Another slice (40<y<50)

Reweight two 20 GeV runs to same beam profile

Linearity 2006 c.f. 2007

Calice-UK 20/09/07

Resolution 2006 c.f. 2007

Calice-UK 20/09/07

Thoughts on systematic errors

- ♦ A major deficiency in what we've presented so far.
- Think what we might need to do, and whether software framework is adequate at present. Comments welcome.
 - Vary threshold cut.
 - Is the signal/noise cut in data reconstruction adequate?
 - Vary calibration constants within their statistical errors.
 - Reprocess using database? Or just smear? Or simulate using MC?
 - Vary alignment
 - ♦ Vary cuts for selecting good e[±] events.
 - ✤ Compare runs at same nominal energy.
 - Vary fit procedure/range for extracting response/resolution
 - Different inter-wafer gap corrections?
 - Intrinsic beam energy uncertainty (0.5%⊕150 MeV/p) and spread (typically 0.5%).
- I think most of these could be done (or approximated well enough) using the existing reconstructed files.

*

. . .

...Continued...

- Would be good to add to the reconstructed files info about the beam (energy (nominal or "true"?), spread, position, angle, magnet currents?).
- Needs for the Monte Carlo?
 - Correct calorimeter geometry.
 - Including misalignments?
 - Dead cells (especially for 2007)
 - Signal-related crosstalk/pedestal shift, if we can understand the effect well enough.
 - More realistic simulation of the beam.
 - Spread of energy/position/angle; correlations between these.
 - Upstream material and showering.
 - Do we need a full beam line simulation?

Summary

- Do we go for publication of 2006 data soon, or wait till we understand 2007 data?
- Should we split up topics into smaller papers?
- Do we combine the DESY and CERN data?
- Big questions to resolve:
 - Understand/simulate the beam more correctly
 - Treatment of energy loss in inter-wafer gaps, in a way that is angle-independent.
 - Characterise/correct/simulate "square events" and other coherent signal-related effects, e.g. SIPS.
- Think realistically about systematics. We are not making precision SM measurements, but we do have to assess the reliability of anything we measure.

