$ZH ightarrow qar{q}bar{b}$ Study With a Neural Network

David Ward and Wenbiao Yan

• **ZH** selection with a neural network

• Higgs mass reconstruction via $M_{b\bar{b}}$

Higgs decay

- Br $(h
 ightarrow b ar{b}) \sim$ 68% @ $M_h = 120~{
 m GeV}$
- Pandora-pythia v3.3 Monte Carlo
- $e^+e^-
 ightarrow ZH
 ightarrow qar{q}bar{b}$ @ 350 GeV
- integrated luminosity of 500fb⁻¹

- TESLA fast simulation: EPJ C44(2005) 481 by P. García-Abia, W. Lohmann, A. Raspereza
- $ZH \rightarrow q\bar{q}q'\bar{q'}$ @ 350 GeV $\Longrightarrow \Delta(m_H) =$ 45 MeV
- goal: full detector simulation and reconstruction
- goal: compare different PFAs

Event reconstruction

- Detector simulation: LDC00Sc detector model @ Mokka v6.2;
- Marlin v00-09-09; MarlinReco v00-05; MarlinUtil v00-05
- Jet finder: KtJet package v1.08 (C++)
- Kinematic fitting: KinFit package @ CMS (C++)
- TMVA package v3.8.13 for neural network
- Flavour tagging: LCFIVertex package v00-02-02
 - use training sample in b-tag package
 - is it OK for LDC00SC at Mokka 6.2 ??? calibration constant and PFA
 - we do not show results by b-tag in this talk

$e^+e^- ightarrow ZH ightarrow qar{q}bb$ event selection

- We follow the paper EPJ C44(2005) 481 to select four jets event
 - total visible energy: $E_{visible} >= 0.8 * 350 \text{ GeV}$
 - particle plow object number: $N_{PFOs} >= 40$
 - event shape parameter T (thrust): T < 0.85 and $|\cos(heta_T)| < 0.80$
 - force events to have 4 jets, and parameter $\log_{10}(1/y_{34}) < 5.0$
 - * jet energy: $E_{jet} > 10.0 \text{ GeV}$
 - * jet theta: $|\cos(\theta)| < 0.99$
- Kinematic fitting: 5C fitting
 - χ^2 probability: $P(\chi^2) > 0.05$
 - use smallest χ^2 of kinematic fitting to choose jet pairing
- MC data @ 250 GeV: not yet => analysis codes @ 350 GeV with local data samples

Higgs mass fitting (without background events)

- Kinematic fitting improves mass resolution: $\Delta(m_H) = 46 \text{ MeV}$
- TESLA fast simulation with background events: $\Delta(m_H) = 45 \text{ MeV}$

MC data samples @ 350 GeV

- $ZH \rightarrow q\bar{q}b\bar{b}$: Pandora-pythia $\sim 32K$ (signal)
- $ZH \rightarrow q\bar{q}b\bar{b}$: Pythia $\sim 51K$ (training & test @ Neural network)
- $WW
 ightarrow q_1 ar q_1 q_2 ar q_2$: Pythia $\sim 92K$
- $ZZ
 ightarrow q_1 ar q_1 q_2 ar q_2$: Pythia $\sim 127 K$
- QQ: Pythia $\sim 99K$
- event preselection
 - total visible energy: $E_{visible} >= 0.6 * 350 \text{ GeV}$
 - particle plow object number: $N_{PFOs} >= 40$
 - four good jets

Why neural network ?

- event selection with cuts: thrust, thrust theta, visible energy, y_{34} , PFA number and χ^2 probability
- event selection with a neural network: SAME variables; default neural network settings and architecture N:(N+1):N:1 for N = 6
- both case: χ^2 probability $P(\chi^2) > 0.05$ for good reconstructed events

	ZH	WW	ZZ	QQ	B/S
cuts	4350	704	11623	33571	10.5514
neural network	4350	183	5920	22768	6.6338

• neural network could improve signal/background ratio

Try to use neural network, NOT final answer

Useful variables

- total visible energy; PFA number; y_{34}
- thrust; theta of thrust axis; sphericity; aplanarity
- Fox-Wolfram moments h_{30} and h_{40}
- minimum jet-jet angle; E_{jet}^{min} ; $E_{jet}^{max} E_{jet}^{min}$
- χ^2 of 5C fitting; Z^0 mass
- j_{mom} , j_{ang} , modified Nachtmann-Reiter angle @ OPAL CERN-EP/98-167

$$\begin{array}{l} - \text{ sort jets by jet energy } E_{j1} \geq E_{j2} \geq E_{j3} \geq E_{j4} \\ - j_{mom} = \frac{|\vec{p_1}| + |\vec{p_2}| - |\vec{p_3}| - |\vec{p_4}|}{\sqrt{s}} \\ - j_{ang} = \frac{E_4}{\sqrt{s}} (1 - \cos \theta_{12} \cos \theta_{13} \cos \theta_{23}) \\ - |\cos \theta_{N-R}| = \frac{(\vec{p_1} - \vec{p_2}) \cdot (\vec{p_3} - \vec{p_4})}{|\vec{p_1} - \vec{p_2}| \cdot |\vec{p_3} - \vec{p_4}|} \end{array}$$

Neural network architecture

- how many variables at input layer ? one output nodes
- how many hidden layers ? and how many nodes at hidden layers ?
 - In principle, one hidden layer is sufficient. In practice, two hidden layers with a small number of neurons may work better (and/or learn faster) than a network with a single layer.
- A neural network MLP default architecture N:N+1:N:1

Compare different neural network architectures

• separation: TMVA package; neural network response y

$$\frac{1}{2} \int \frac{(y_s - y_b)^2}{y_s + y_b} dy \tag{1}$$

separation is zero for identical signal and background shapes, and it it one for shapes with no overlap.

- $S/\sqrt{S+B}$ with "0.5-criterion"
 - Signal (NN's response > 0.5);
 - Background (NN's response < 0.5)
- background-to-Signal ratio B/S with "0.5-criterion"
- gaussian significance S/\sqrt{B} with "0.5-criterion"

Number of variables at input layer

- N variables from total 17 variables: C_{17}^N choices; e.g. $C_{17}^{10} = 17 * 16 * 15 * 14 * 13 * 12 * 11 = 98017920$!!!
- remove variable with smallest *Importance* at each step

Importance: sum of the weights-squared of the connections that leave input variable

-	 MLP	: 1	Ranki	ng	g result (top variabl	.e	is best ranked)
-	 MLP	: :					_
-	 MLP	: 1	Rank	:	Variable	:	Importance
-	 MLP	: -					
-	 MLP	:	1	:	aplanarity	:	9.111e+01
-	 MLP	:	2	:	jang	:	6.002e+01
-	 MLP	:	3	:	h30	:	1.918e+01
-	 MLP	:	4	:	thrusttheta	:	1.174e+01
-	 MLP	:	5	:	sphere	:	8.744e+00
-	 MLP	:	6	:	thrust	:	7.013e+00
-	 MLP	:	7	:	h40	:	2.858e+00
-	 MLP	:	8	:	chi2	:	2.721e+00
-	 MLP	:	9	:	ycut	:	2.195e+00
-	 MLP	:	10	:	jmom	:	2.130e+00
-	 MLP	:	11	:	visible	:	1.953e+00
-	 MLP	:	12	:	pfano	:	1.832e+00
-	 MLP	:	13	:	minjetenergy	:	4.206e-01
-	 MLP	:	14	:	nrang	:	3.874e-01
-	 MLP	:	15	:	massz0	:	1.636e-02
-	 MLP	:	16	:	smallangle	:	1.457e-02
_	 MLP	:	17	:	jetenergydifference	:	8.297e-04

Number of variables at input layer: N:N+1:N:1

• at input layer: 14 variables $\sqrt{}$

One hidden layer: $N:N_h:1$

- for 14 variables: 14:15:14:1 \sim 14:30:1 \checkmark & 14:32:1
- similar plots for any number of variables: not yet

TMVA classifiers

• Parameters of classifiers: taken from example code of TMVA package

 Boosted Decision Trees (BDT) and Artificial Neural Networks (TMIpANN and MLP) have similar results.

TMVA classifiers

Factory	: Evaluation results ranked by best signal efficiency and purity (area)								
Factory	:								
Factory	: MVA	Signal ef:	ficiency at	bkg eff. (e	rror):		Sepa-	Signifi-	
Factory	: Methods:	@B=0.01	@B=0.10	@B=0.30	Area		ration:	cance:	
Factory	:								
Factory	: BDT	: 0.605(03)	0.932(02)	0.988(00)	0.973		0.753	1.874	
Factory	: TMlpANN	: 0.578(04)	0.936(01)	0.987(00)	0.973		0.758	1.951	
Factory	: MLP	: 0.579(04)	0.932(02)	0.986(00)	0.971		0.750	1.772	
Factory	: PDERS	: 0.491(04)	0.903(02)	0.985(00)	0.965		0.695	1.654	
Factory	: CFMlpANN	: 0.252(03)	0.921(02)	0.981(01)	0.959		0.716	1.748	
Factory	: LikelihoodPCA	: 0.210(03)	0.852(02)	0.964(01)	0.936		0.615	1.330	
Factory	: HMatrix	: 0.325(03)	0.831(03)	0.952(01)	0.934		0.612	1.194	
Factory	: Fisher	: 0.069(02)	0.826(03)	0.959(01)	0.927		0.614	1.088	
Factory	:								

- Boosted Decision Trees (BDT): slowest
- TMIpANN and MLP: a clear speed advantage for the MLP
- MLP: 🗸

Overtraining of neural network

• NN's response for test sample and training sample are similar.

Neural network learning parameters

- an epoch is one complete iteration through all available training samples.
- number of training cycles: 700

Neural network parameters: learning rate η

• the positive learning rate η is a factor in updating weights

Neural network parameters: decay rate

• the decay rate is a factor for learning parameter; smaller decay rate, larger number of training cycles

Neural network architecture

- neural network architecture 14:30:1
 - input layers: 14 variables
 - one hidden layer: 30 nodes
 - output layers: one
- learning parameters
 - number of training cycles: 700
 - learning rate: 0.02 (default)
 - decay rate: 0.01 (default)
- neuron activation function: sigmoid (default)
- synapsis function: sum (default)
- learning mode: sequential (default)

Neural network's response

- the signal peaks around 1.0; the backgrounds peak around 0.0
- plots are normalizes to one
- NN response $\in (0,1)$ by a sigmoid function $1/(1+e^{1.25-4.5x})$: not yet

Higgs mass: neural network vs. cuts-based method

	ZH	WW	ZZ	QQ	B/S	S/\sqrt{B}
cuts	4350	704	11623	33571	10.5514	20.3044
neural network	4351	157	3533	13707	3.9984	32.9877

Summary

- A analysis code is ready for $e^+e^-
 ightarrow ZH
 ightarrow qar{q}bar{b}$ study
 - cuts-based method; neural network: MLP @ TMVA package
 - neural network has a better signal/background ratio, slightly improves higgs mass resolution.

	ZH	WW	ZZ	QQ	B/S	S/\sqrt{B}
cuts	4350	704	11623	33571	10.5514	20.3044
neural network	4351	157	3533	13707	3.9984	32.9877

- wait for simulated samples for detector models @ 250 GeV
 - Try to use neural network @ 350 GeV, NOT final answer
- b-tag effect: we do not show results
 - use training sample in b-tag package
 - is it OK for LDC00SC at Mokka 6.2 ???