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LOGIC Simulations 

Dialogue 
 
This is a preliminary version for circulation before the IDR.  The outstanding items 
listed below should be completed for the IDR where a new version of this document 
will be available. 
 
This is a long document, intending to cover all aspects of the digital control circuits 
on the ASIC1 test structure, starting with individual logic gates and including mixed-
mode simulations incorporating Verilog stimulus, full row-controller custom logic, 
SRAM memory banks and analog pixels. 
 
Dialog is included after results where appropriate – the contents of this document will 
be discussed in more detail in the IDR. 
 
 
Items outstanding… 
 

• Top level schematic 
o Pad selection  
o Global buffering 
o Power pad duplication estimates 

• High-speed Config shift reg not yet implemented 
• Buffering of digital signals between arrays 
• Power-up sequencing – (disabled monostables, for example?) 
• Top level sim with presample pixel 

 

 



Logic simulation: Logic Cell Drive Strength 
Simulation top-level = “sim_inverter” 
 
Logic inverters were designed with different drive strengths.  Functional logic blocks 
(2 and 3 input NAND and NOR gates) were designed to the minimum drive strength 
only.All transistors used are 1.8v parts to reduce power consumption.   
 
Cell variant x0 x1 x2 x3 x4 

Test load 10fF 30fF 55fF 90fF 125fF 

Rise time 132p 129p 133p 125p 125p 
Fall time 113p 120p 127p 129p 133p 

Pmos width 0.8 2.0 3.5 6.0 8.4 
Nmos width 0.3 0.8 1.4 2.2 2.9 
 
Above: Tabulated results for typical process corner.  Rise and fall time (for these 
tests) are recorded as the transition time between 15% and 85% of the full-scale 1.8v 
signal. 

Results waveforms 

 
Above: Inverters of each strength variant are simulated together with their 
corresponding test load.  Transient waveforms are shown on the left (50ps per 
division); DC sweep to determine switching point is shown on the right.



 

 
 
Above: Inverters and logic gates of each strength variant are simulated together with 
their corresponding test load in all process corners.  Transient waveforms are shown 
on the left (100ps per division); DC sweep to determine switching point is shown on 
the right: spread approx 200mV. 
 



Logic simulation: HV Logic Cells 
Simulation top-level = “sim_inverter” 
 
Specifically and only for driving the write transistor of the SRAM cells, inverters for 
high voltages (>1.8v) were created:  The x3_hv and x4_hv strength inverters are 
copies of their low-voltage equivalents, with the nmos transistor enlarged to the same 
dimensions of the pmos.  The equal transistor sizing lowers the switching point such 
that these cells could safely be used with a 1.8v logic input (and guarantees that ‘1’ 
and ‘0’ are both correctly identified, although the noise margin on a ‘1’ will be 
smaller).  Increasing the size of the nmos device means the rise- and fall-times of 
these devices are compromised (unequal). 
 

Cell variant x3_hv x3_hv X4_hv X4_hv 

Test load 90fF 90fF 125fF 125fF 
VDD 2.5 3.3 2.5 3.3 

Rise time 235p 200p 110p 111p 
Fall time 131p 131p 82p 103p 

Pmos width 6.0 6.0 8.4 8.4 
Nmos width 6.0 6.0 8.4 8.4 

 
Above: Tabulated data for typical process corner 
 

 
Above: Standard and high-voltage x3 and x4 inverters are simulated with their 
respective load.  2.5v and 3.3v supplies for the hv parts are simulated to check the 
switching point is a safe margin from the 1.8v supply.  Transient results are shown on 
the left (500ps per major division), DC sweep shown on the right.



 
 
Above: Standard and high-voltage x3 and x4 inverters are simulated with their 
respective loads at 1.8v, 2.5v and 3.3v supplies in three process corners. 

 



Logic simulation: Monostables 
 
Two monostables were designed with delays in ratio 1:3.  These can provide the reset 
timing for the pre-sample pixel, and also the correct length hit pulse for the preshape 
pixel.  The graph and table below allow the desired timing to be selected by setting 
the appropriate bias current.  The monostables can be triggered with a short or long 
pulse, the output will be high for the desired time. 

 
Above: Capacitor corners are checked since these will have the dominant effect on the 
timing.  The timing ratio remains consistent, so the external control would allow the 
circuits to be trimmed to the desired time delays.  These circuits can be evaluated on 
ASIC1 to determine how localalised the control of these needs to be. 
 

Bias current “200ns” monostable 
output 

“600ns” monostable 
output 

215nA ~250nS pulse ~750nS pulse 
265nA ~200nS pulse ~600nS pulse 
350nA ~150nS pulse ~450nS pulse 

 
 
 



A monte-carlo simulation is 
run to check the mismatch 
effects on the monostable 
circuits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
An accidental scaling of the 
formula used in the monte-
carlo setup means these 
results must be multiplied 
by 3 to yield correct results: 
 
 
 
 
 Mu = 149.523ns 

Sd = 8.763ns 

Mu = 466.236ns 
Sd = 29.047ns 

 
 
 



Logic simulation: 1 bit SRAM registers: Data Sense (readout) 
Simulation top level = “sim_sram_reg_parasitics” 

Circuit stimulus/scenario 
 
SRAM operation is evaluated using a bank of 19 1-bit registers at various points along 
a full-length readout column (ie near sense amplifier, mid way along and furthest 
from sense amplifier). 
 
Signal line model consists of series resistance of 8 ohms and capacitance to ground 
for each pixel (50um).  Capacitance is estimated at 10fF for parasitics; a further 30pF 
is added to account for the 18 other SRAM cells that are disconnected from the line 
(Drain of 0.5um wide inactive NMOS device).   
 
Simulation variables
 

icompbias1 = 6u unitR = 8 
icompbias2 = 16u unitC = 40f 

  

Results waveforms 
 

 
Above: Data sense amplifier internal signals: Current consumption ~75uA per bit.

Early simulation results with original OPIC sense amplifier, since superseded (see following section)   
Some relevance remains hence this section is retained with this note. 



 
Above: Signals from near/far/mid point along typical readout column. 
 
Furthest cell data is sensed through 96 R-C load elements. 
Interim cell data is sensed through 64 and 32 R-C load elements. 
Nearest cell data is sensed directly at input to column amplifiers. 
 
 

 
Above: Signals from near/far/mid point along very long readout column 
 
Furthest cell data is sensed through 384 R-C load elements. 
Interim cell data is sensed through 256 and 128 R-C load elements. 
Nearest cell data is sensed directly at input to column amplifiers. 
 
 

96 pixels = 4.8mm 
 one of the four 

pixel test structures 
on ASIC1 

385 pixels = 
19.2mm  longer 
lines are possible at 
slower speeds 



 
 
Above: Signals from near/far/mid point along very long readout column: Corners. 
 
Data delay is between 30ns and 70ns.   
 
 
 
 
 



 
Above: Sensed data output for mismatch monte-carlo statistical analysis 
~15Mhz maximum readout rate is shown to be possible, (10Mhz is simulated) 

SRAM overdrive strength 
 
Basic SRAM cell is a pair of cross-coupled inverters that must be overpowered to 
write new data.  Therefore it is important to understand the strength required to 
overpower a SRAM cell – if too many cells were written from the same data (ie the 
timestamp signal) they might become corrupted. 
 

Driving cell  
(SRAM Write signal) 

Process 
corner 

x3_hv (2.5v) x3 (1.8v) 

SS 9 0 
SF 8 0 
TT 10 11 
FS 10 10 
FF 11 12 

 
Above: Number of active SRAM cells that can be overpowered (successfully written).  
This data indicates the need to overdrive the write transistor for reliable SRAM 
operation in all process corners.  This information is also important to ensure 
timecode buffers are not expected to drive too many rows, maximum 8.  Monte-Carlo 
simulations also show that a data driver cell of weaker strength is insufficient and 
results in corrupted data. 
 



Logic Simulation: Data Sense (reduced current) 
 
The circuit is operated in reduced current mode as detailed in the table below: 
 

Data Column Static current bias 10uA  
 Mirrored 4:1 onto line as 2.5uA  
SRAM cell Current sink for ‘zero’ 5uA 
 Current sink for ‘one’ 0 
Data Sense 3.3v bias ref 13uA 
 Total in sense amplifier 10.4uA 

Results 

 
Above: Process corner variations have negligible effect on the operation of this 
circuit.  The bias circuit (which was originally designed for the OPIC project) 
includes stacked transistors to try to maintain consistent switching performance in 
different process corners; this seems to be working in this process also, and has not 
been modified. 



 

90ns 

46ns 

Read 
asserted 

 
Above:  Zoomed operation for cell accesses at the near and far ends of a 25mm data 
column.  These simulations indicate a 5Mhz SRAM readout rate will possible from 
the full-sized ASIC2. 
 
 
Monte carlo simulations for the furthest cell report the following delay statistics from 
assertion of read-enable to valid data appearing at the column base: 
 

mu 82 ns 
sd 17 ns 
N 70  

 



 Logic Simulation: SRAM shift register cell 
 
The SRAM shift register cell and waveform timings are illustrated below. 
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• During phi1 the SRAM cell holds its own state with two cross-coupled 
inverters. 

 
• As phi2 switches on, node A is updated with the new input state (connected 

from previous SR cell through a phi2 switch).  Node B updates accordingly.  
At the same time switch phi2b switches off, thus allowing the cell to drive its 
current state at the output without corruption from the new input. 

o RACE CONDITION 
o Node B is updated with the new value at node A.  Node A must not be 

allowed to propagate through the inverter and phi2b switch to the node 
C (where it would corrupt the cell’s previous data). 

o The undesirable signal path includes an extra inverter with respect to 
the desirable signal sequence, therefore the race condition will result in 
the desired outcome. 

 
• During phi2 the SRAM cell drives its stored state to the next cell (connected to 

node D through a phi2 switch).  The stored state is held on node C, comprising 
parasitic and gate capacitances of the inverter. 

 
• As phi2 switches off the cell becomes isolated from its neighbour, and switch 

phi2b closes to update node C with the new state.  
o RACE CONDITION 
o Node C is updated with the new value at node B.  Node C must not be 

allowed to propagate through the inverter and phi2 switch to the output 
node and into the next cell (where it would corrupt data at node A). 

o The undesirable signal path includes an extra inverter and phi2 switch 
with respect to the desirable signal sequence, therefore the race 
condition will result in the desired outcome. 

o An intermediate value may be sampled on the parasitic capacitance 
between two SR cells – this would not affect the correct operation of 
the SR cell. 

 
• As phi1 switches on the cell completes the internal feedback loop and the new 

state is stored indefinitely (whilst powered). 
 



 
 

 

A 

B 

C 

D 

 
Above: Corner simulations showing the internal nodes in the SR cell.  The race 
conditions at both edges of phi2 behave correctly. 

 

C 

A 

Errors due to 
race hazards 
do not occur 

Above: Mismatch Monte Carlo (100 runs) to check performance is robust in race 
conditions. 



Logic simulation: Bi-Directional SRAM shift register 
Simulation top-level = “sim_sram_shift20” 
 
The bidirectional shift register generates the read and write pointers for the SRAM 
memory bank.  After power-on it could be in an unknown state, so the initialisation 
routine requires the shift register to be clocked in the backwards direction for 20 
clocks to ensure all elements are programmed to zero.   
 
In normal operation the register is clocked once in the forward direction to initialise, 
and then once again for each register that must be written.  During readout mode the 
register is clocked once in backward direction to initialise, then combinational logic 
enables each row to access each of its valid registers sequentially until the column 
read is complete. 
 
If >19 forward (“write”) clocks are received the register outputs a “full” wired-or 
signal, and will correctly read back the first 19 registers that were written.  

 
Above: Typical operation, showing 5 clocks in the forward direction, then 25 clocks 
in the reverse direction, of which the first 5 act upon the shift register and replay those 
registers that were written-to.  The shift register thereafter ignores any further phi2 
clocks and sets the “Done” signal (combinational NOR of all 20 bits).



 
Above: Overflow condition: 25 hits are simulated, note that reg 0 remains active 
beyond the 20th hit – this is used to generate the overflow signal, and ensures that 
when clocked backwards the shift register has not lost its token so that readout of the 
other 19 registers is achieved (as illustrated). 
 

 
Above: Correct operation verified in process corners SS,TT,FF. 



Logic simulation: Bi-Directional SRAM cells 
 
The standard SRAM shift register cell is adapted to make it bi-directional as 
illustrated below. 
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The last cell must be modified such that it will hold the token rather than lose it if 
clocked again (robust operation in overflow conditions) and also ensure that a ‘0’ is 
driven as the cell input when in backwards mode. 
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The “bi-directional” and “endstop” shift register cells are arranged to form a 20-
element shift register.  A logical NOR generates the SR input in the fwd mode such 
that either after reset or one forward clock cycle when empty, the register is reset to 
the default condition 10000000000000000000. 
 

fwd bck 

 
 



Results Waveforms 
 

 

20ns 

 
hits readout  

 
 
Above: Typical operation involving 5 consecutive hits (ie all in the same 42-pixel 
section).  These simulations are run at ~50Mhz to check operation is possible at the 
target 150ns bunch-crossing rate.   
 

 
Above: The overflow condition is verified – the register is clocked for 25 hits.  The 
circuit can be seen to hold the token at position 0 and then assert each enable line for 
all the registers back to 19. 
 
 
 
 
 
 



Logic simulation: Latch-Hold circuits 
 
 
 
 
 
 



Logic simulation: Mask & Config programming 
 
Each pixel contains a 5-bit SRAM shift register, arranged such that each column 
forms a long shift register.  Global clocks are distributed along each row.  Pixels 
buffer and generate the compliment clocks internally to ensure clean clock waveforms 
for the SRAM shift register cells. 
 

Pixel operation 

 

Reset 

Latch 

Reset occurs during phi2.  Input data is latched on the falling edge of phi2.  In the 
example above a single ‘one’ is shifted through the SR.  In the real system, data is 
shifted in as TRIM-LSB first with the MASK as the final bit.  The full string of 5-bit 
codes in this order are shifted through the column. 



System operation 

phi1, phi2, RstB 100 pixels in row 

 
 
Above: Diagram representation of the phi1/phi2 non-overlapping clock distribution 
simulation for a section the mask shift register.  Each pixel generates clk and clkb 
from the column clock to ensure edges are quick and a true-complement to ensure 
correct operation of the SR cells.  Distributed RC models for the long signal lines are 
inserted to model a row of 100 pixels.   Clock drivers of strength x4 are used to drive 
the long row and column lines. 
 
The triple-inverter clock buffering scheme is used to ensure local edges are fast and 
true compliment.   Three buffers per pixel (x2 for two clocks) will all switch in the 
same time window, thus the current drawn could be significant during mask 
programming.  Care must be taken to ensure power tracking is wide enough to 
minimise power droop.  Since these cells are not used during normal operation the 
power net can be shared with other circuits. 



 
 
Above: Operation is demonstrated at 1Mhz for 100 parallel shift registers.  50ns 
separation of the non-overlapping clocks ensures correct operation.  Edges of around 
12ns are seen on the global clocks (these are buffered and the complement generated 
in-pixel to ensure good clock integrity). 
 

 
 
 
 
 
Left: Local clock buffering 
ensures the potentially slow 
row clock signals are fast 
and true compliment.  



Logic simulation: Full pixel ‘slice’ simulation 
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The diagram above depicts the slice simulation including 42 pixels, the master row 
controller, 19 SRAM registers and data sense amplifiers.  This simulation omits any 
mask or trim programming to reduce the simulation time (all channels are enabled). 
 
The testbench initialises the logic and waits for the analog to settle/power-up.  The 
logic is then sequenced as per bunch-train operation, and simulated hits are applied to 
different pixels at different times.  The logic detects and stores the hit location and 
time, which is then read out and displayed in the simulation log after the bunch train 
is complete (16 crossings). 
 
 
 



 

 

@8330

@8780

@9530 

Pix 7

Pix 17 Pix 30 

Pix 29 Pix 16

 
Mask register = 111111000000111111111111111111111111111111 at initialisation 
Hit pattern   = 000000000000000000000000000000000000000000 at initialisation 
Mask programming omitted. 
Clear & Initialise the SR control registers 
SR Clear complete 
SR Initialisation complete 
Latch current Hit Pattern...                 7730 
Latch current Hit Pattern...                 7880 
Latch current Hit Pattern...                 8030 
Latch current Hit Pattern...                 8180 
Latch current Hit Pattern...                 8330 
Latch current Hit Pattern...                 8480 
Latch current Hit Pattern...                 8630 
Latch current Hit Pattern...                 8780 
Latch current Hit Pattern...                 8930 
Latch current Hit Pattern...                 9080 
Latch current Hit Pattern...                 9230 
Latch current Hit Pattern...                 9380 
Latch current Hit Pattern...                 9530 
Latch current Hit Pattern...                 9680 
Latch current Hit Pattern...                 9830 
End of bunch train. 
Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001101 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001101010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001101 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001101000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001000 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000001000101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000101 
     >>           BANK = 100 
     >>           PATT = 000010 
     >>           DATA = 0000000000101100000010 

0x01 
0x02 
0x03 
0x04 
0x05 
0x06 
0x07 
0x08 
0x09 
0x0A 
0x0B 
0x0C 
0x0D 
0x0E 
0x0F 

0x0D 

0x0D 

0x08 

0x05 
Pix 7 

Pix 16 

Pix 17 

Pix 29 

Pix 30 

     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

 

TT   
SS   
FF   
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Logic Simulation: Full Pixel Slice Including Masking 
This is a subsequent revision of the simulation above to include the mask and trim 
programming control.  Analog hits are generated in pixels 7, 16, 17, 29 and 30 as 
shown below.  The mask register is set to deactivate pixels 6  11 inclusive. 

 
 

Results Transcript 
The corresponding hit data is seen in the excerpt from the simulation log below.  The 
hit on pixel 7 has correctly been masked.  Note also that the hit on pixel 30 appears 
twice in the transcript – this is a double hit (see below). 
 
 
 

Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

D
ou

bl
e 

H
it!

!!
      >> HIT INFO: TIME = 0000000001100 

Pixel 30 at time 1100      >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001100010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 

Pixel 30 at time 1011      >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001011010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 

Pixel 29 at time 1011      >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001011000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000111 

Pixels 16&17 at time 1100      >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000000111101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 - 
 - 
 - 



 
The double hit seen in the simulation deserves further investigation: 
 

 

“HIT” signal 
from pixel 

“Hold” sampling 
every 150ns 

Latched Masked 
Hit flags 
processed by 
logic 

 
Looking at the internal signals for pixel 30 shows that the rising edge of the hit signal 
occurs at approximately the same time as the “hold” sampling.  The duration of the hit 
signal is measured to be 157ns, which means it is sampled as active (high) on two 
consecutive occasions.  This shows how a double-hit might occur. 
 
 
 
Whilst it is interesting that this did occur in simulation, we consider the probability of 
this occurring to be low, since it depends on so many variables (some of which are 
artificially generated in the simulation).  A full analysis would involve much analysis 
from many device and circuit simulations and is probably impractical!  (Discussion 
welcome) 
 
If double-hits are seen during testing, this might indicate that the biasing of the 
monostables is too high.  In this case the “mso_bias” that controls the timing of the hit 
pulse can be adjusted until double-hits cease to appear.  Note however that adjusting 
the bias too low would make the “HIT” signal pulse much less than 150ns, in which 
case hits could be dropped altogether if a similar set of timing circumstances occur. 



End of bunch train. 
Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001100010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001100000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001011000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000111 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000000111101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 - 
 - 
 - 
 - 
 - 
 - SS 

Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001100010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001011010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001011000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000111 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000000111101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 - 
 - 
 - 
 - 
 - 
 - 

FF 



Logic Simulation: Row Encoder 
 
The basic structure of the row encoder is illustrated below.  The function of this block 
is to report at the column base the row address of the cell that is currently being read.  
To minimise re-design effort for ASIC2 the full 9 bits are implemented, although only 
7 are strictly required for the ASIC1 test structure. The row addresses are assigned in 
a GRAYCODE order. 
 

 
 

Tied to VDD 
or GND to 
form unique 
row address 

N bits 

RowReadActive 

Shared column 
address bus. 

The active cell drives the column bus with its own unique code.  To avoid large 
current surges the inverter cells are current limited; this makes the column bus 
rise/fall time longer, but high-speed operation during the readout phase is not 
necessary. 
 
 
 

Simulations 
 
A row-encoder of 84 cells is simulated.   
 
Two RowReadActive signals are applied in sequence to the near and far ends to 
compare signal timing.  An R-C model is used between each row encoder cell to 
model the likely real conditions.  Current is monitored during switching. 
 
A Verilog stimulus is used to individually excite each of the 84 enable 
(RowReadActive) signals and print to screen the address code that is seen at the base 
of the column.  This text file is imported into excel and processed to check that no  
repeated codes are seen in the 84-code set.   
 

 



Results Waveforms 
 

 

Current during 
switching. 

20uA 70uA

40ns Cell select 

Column output 
after buffering 

Column lines

 
Above: Row encoder outputs (for near and far cells) are shown at the column base.  
The current is limited to 20uA per switching signal (this may be adjusted by external 
bias current).  The response time is effectively the time taken to charge the parasitic 
line capacitance with a DC current of 20uA.  The line behaves as a single capacitor, 
not a transmission line, therefore no difference is seen between the response from the 
nearest/furthest cell. 
 
Readout at 1Mhz could easily be achieved with this row encoder. 
 
 
 
 



Address = 001111010 
Address = 001111011 

Left: Mixed-mode simulation output log excerpt.     
 
Importing this data into excel, converting to 
decimal and sorting confirms there are no repeated 
codes.  
 
Note that the bus ordering is such that the enables 
input bus’ MSB corresponds to the address 0. 
 
 
 
 
 
Below: Each enable signal is raised in turn to 
generate the data output shown on the left. 

 
 
 
 
The condition when more than one enable signal is 
raised will cause conflict on the address bus and 
draw additional current.  This scenario should be 
avoided – since the enable inputs are derived from 
the readout logic where only one cell is accessed at 
any one time this condition should be assured. 
 
 

Address = 001111001 
Address = 001111000 
Address = 001101000 
Address = 001101001 
Address = 001101011 
Address = 001101010 
Address = 001101110 
Address = 001101111 
Address = 001101101 
Address = 001101100 
Address = 001100100 
Address = 001100101 
Address = 001100111 
Address = 001100110 
Address = 001100010 
Address = 001100011 
Address = 001100001 
Address = 001100000 
Address = 000100000 
Address = 000100001 
Address = 000100011 
Address = 000100010 
Address = 000100110 
Address = 000100111 
Address = 000100101 
Address = 000100100 
Address = 000101100 
Address = 000101101 
Address = 000101111 
Address = 000101110 
Address = 000101010 
Address = 000101011 
Address = 000101001 
Address = 000101000 
Address = 000111000 
Address = 000111001 
Address = 000111011 
Address = 000111010 
Address = 000111110 
Address = 000111111 
Address = 000111101 
Address = 000111100 
Address = 000110100 
Address = 000110101 
Address = 000110111 
Address = 000110110 
Address = 000110010 
Address = 000110011 
Address = 000110001 
Address = 000110000 
Address = 000010000 
Address = 000010001 
Address = 000010011 
Address = 000010010 
Address = 000010110 
Address = 000010111 
Address = 000010101 
Address = 000010100 
Address = 000011100 
Address = 000011101 
Address = 000011111 
Address = 000011110 
Address = 000011010 
Address = 000011011 
Address = 000011001 
Address = 000011000 
Address = 000001000 
Address = 000001001 
Address = 000001011 
Address = 000001010 
Address = 000001110 
Address = 000001111 
Address = 000001101 
Address = 000001100 
Address = 000000100 
Address = 000000101 
Address = 000000111 
Address = 000000110 
Address = 000000010 
Address = 000000011 
Address = 000000001 
Address = 000000000 

Hit 0 

Hit 1 

Hit 83 

Hit 41 



Logic Simulation: Driving Long Column Signals 
 
The master-controller logic is stripped of all functionality and only the input gates are 
left.  This dummy block is instantiated 84 times with RC line models and driven with 
x4 strength buffers to check the clock and control signals can be operated at the 
required speeds.   
 

Results Waveforms 
 

 
 
Above: Internal to each row, phi1 clock edges differ by <1ns between the top and 
bottom cells in the 84-high column.   The blue trace shows the true clock signal on the 
shared column line that distributes the clock.  The internal buffering within each row 
ensures the local clock edges are fast and true compliment.  
 
The other control signals (fwd, hold, init etc) are buffered with the same x4 buffer, 
and loaded in the same way as the clocks (a single input port on an inverter/logic cell) 
at each row.  This simulation is taken as verification for the buffering and operating 
speed of all these control signals. 



 

 

40ns 

2ns 

Above: The wired-or used to indicate overflow is seen to respond quickly on the 
occurrence of overflow, but is much slower to respond once the overflow has cleared.  
This is primarily a debug feature and therefore operation speed is unimportant; 
functionality is verified. 
 

 
Above: The read-enable signal propagates from the bottom to the top of the column 
(since the dummy cells are all un-hit).  The 17ns delay is the typical time taken for the 
read token to pass through all 84 cells this varies by up to 3ns in process corners.  
This sets a realistic maximum readout clocking rate of 25Mhz (assuming the token is 
collected and reset for a clock cycle after every 84-pixel stretch.)    This operating 
speed is more than enough for the data rates of this project, especially if columns are 
operated in parallel. 

17ns 

14ns FF 

TT 

SS 20ns 



Logic Simulation: Three Master-Controllers + Row Encoder 
 
The diagram below depicts the system simulation to check integration of several key 
circuit blocks in a logic column formation.  17 hits are applied in 3 time divisions. 
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Above: Inverted row addresses during readout from ‘Bot’, ‘Mid’ & ‘Top’ memories. 
Below: Verilog simulation log excerpt with colour-coded annotations to aid reading. 



>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 100 
     >>           PATT = 011100 
     >>           DATA = 0110111001111111111100    
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 001 
     >>           PATT = 000100 
     >>           DATA = 1100001001111111111100  
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 100 
     >>           PATT = 100000 
     >>           DATA = 0111000001111111111110  
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 001 
     >>           PATT = 000001      
     >>           DATA = 1100000011111111111110  
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 100 
     >>           PATT = 100000 
     >>           DATA = 0111000001111111111100   
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 001 
     >>           PATT = 000001 
     >>           DATA = 1100000011111111111100 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 100 
     >>           PATT = 001110 
     >>           DATA = 0110011101111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 001 
     >>           PATT = 001000 
     >>           DATA = 1100010001111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 100 
     >>           PATT = 100000 
     >>           DATA = 0111000001111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

 

Clear & Initialise the SR control registers 
SR Reset complete 
Top Hit pattern   = 000111000110000101000100000011000010000001 at time                  173 
Mid Hit pattern   = 000000000000000000000000000000000000000000 at time                  173 
Bot Hit pattern   = 100000000000000000000000000000000000000001 at time                  173 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Latched. 
Top Hit pattern   = 100000000000000000000000000000000000000001 at time                  465 
Mid Hit pattern   = 001110000000000000000000000000000000001000 at time                  465 
Bot Hit pattern   = 000000000000000000000000000000000000000000 at time                  465 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Latched. 
Top Hit pattern   = 000000000000000000000000000000000000000000 at time                  657 
Mid Hit pattern   = 100000000000000000000000000000000000000001 at time                  657 
Bot Hit pattern   = 011100000000000000000000000000000000000100 at time                  657 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Latched. 
End of bunch train. 
Readout phase: 
SR Initialisation complete 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 001 
     >>           PATT = 000001 
     >>           DATA = 1100000011111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 100 
     >>           PATT = 000111 
     >>           DATA = 0110001111111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>   
>> HIT INFO: TIME = 0000000000001 
     >>           BANK = 101 
     >>           PATT = 000110 
     >>           DATA = 0100001101111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 111 
     >>           PATT = 000101 
     >>           DATA = 0000001011111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 110 
     >>           PATT = 000100 
     >>           DATA = 0010001001111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 010 
     >>           PATT = 000011 
     >>           DATA = 1010000111111111111110 
     
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 011 
     >>           PATT = 000010 
     >>           DATA = 1000000101111111111110 
     
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 001 
     >>           PATT = 000001 
     >>           DATA = 1100000011111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
- 
- 
- 
- 
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