
Logic & Top-Level Simulations

LOGIC SIMULATIONS ...2

DIALOGUE ..2
LOGIC SIMULATION: LOGIC CELL DRIVE STRENGTH ..3
LOGIC SIMULATION: HV LOGIC CELLS...5
LOGIC SIMULATION: MONOSTABLES ..7
LOGIC SIMULATION: 1 BIT SRAM REGISTERS: DATA SENSE (READOUT) ..8
LOGIC SIMULATION: 1 BIT SRAM REGISTERS: DATA SENSE (READOUT) ..9
LOGIC SIMULATION: DATA SENSE (REDUCED CURRENT)..13
LOGIC SIMULATION: SRAM SHIFT REGISTER CELL ..15
LOGIC SIMULATION: BI-DIRECTIONAL SRAM SHIFT REGISTER..18
LOGIC SIMULATION: BI-DIRECTIONAL SRAM CELLS ...20
LOGIC SIMULATION: LATCH-HOLD CIRCUITS ...21
LOGIC SIMULATION: LATCH-HOLD CIRCUITS ...22
LOGIC SIMULATION: MASK & CONFIG PROGRAMMING...23
LOGIC SIMULATION: FULL PIXEL ‘SLICE’ SIMULATION ...26
LOGIC SIMULATION: FULL PIXEL SLICE INCLUDING MASKING ..29
LOGIC SIMULATION: ROW ENCODER..31
LOGIC SIMULATION: ROW ENCODER..32
LOGIC SIMULATION: DRIVING LONG COLUMN SIGNALS ..34
LOGIC SIMULATION: DRIVING LONG COLUMN SIGNALS ..35
LOGIC SIMULATION: THREE MASTER-CONTROLLERS + ROW ENCODER ..37

LOGIC Simulations

Dialogue

This is a preliminary version for circulation before the IDR. The outstanding items
listed below should be completed for the IDR where a new version of this document
will be available.

This is a long document, intending to cover all aspects of the digital control circuits
on the ASIC1 test structure, starting with individual logic gates and including mixed-
mode simulations incorporating Verilog stimulus, full row-controller custom logic,
SRAM memory banks and analog pixels.

Dialog is included after results where appropriate – the contents of this document will
be discussed in more detail in the IDR.

Items outstanding…

• Top level schematic
o Pad selection
o Global buffering
o Power pad duplication estimates

• High-speed Config shift reg not yet implemented
• Buffering of digital signals between arrays
• Power-up sequencing – (disabled monostables, for example?)
• Top level sim with presample pixel

Logic simulation: Logic Cell Drive Strength
Simulation top-level = “sim_inverter”

Logic inverters were designed with different drive strengths. Functional logic blocks
(2 and 3 input NAND and NOR gates) were designed to the minimum drive strength
only.All transistors used are 1.8v parts to reduce power consumption.

Cell variant x0 x1 x2 x3 x4

Test load 10fF 30fF 55fF 90fF 125fF

Rise time 132p 129p 133p 125p 125p
Fall time 113p 120p 127p 129p 133p

Pmos width 0.8 2.0 3.5 6.0 8.4
Nmos width 0.3 0.8 1.4 2.2 2.9

Above: Tabulated results for typical process corner. Rise and fall time (for these
tests) are recorded as the transition time between 15% and 85% of the full-scale 1.8v
signal.

Results waveforms

Above: Inverters of each strength variant are simulated together with their
corresponding test load. Transient waveforms are shown on the left (50ps per
division); DC sweep to determine switching point is shown on the right.

Above: Inverters and logic gates of each strength variant are simulated together with
their corresponding test load in all process corners. Transient waveforms are shown
on the left (100ps per division); DC sweep to determine switching point is shown on
the right: spread approx 200mV.

Logic simulation: HV Logic Cells
Simulation top-level = “sim_inverter”

Specifically and only for driving the write transistor of the SRAM cells, inverters for
high voltages (>1.8v) were created: The x3_hv and x4_hv strength inverters are
copies of their low-voltage equivalents, with the nmos transistor enlarged to the same
dimensions of the pmos. The equal transistor sizing lowers the switching point such
that these cells could safely be used with a 1.8v logic input (and guarantees that ‘1’
and ‘0’ are both correctly identified, although the noise margin on a ‘1’ will be
smaller). Increasing the size of the nmos device means the rise- and fall-times of
these devices are compromised (unequal).

Cell variant x3_hv x3_hv X4_hv X4_hv

Test load 90fF 90fF 125fF 125fF
VDD 2.5 3.3 2.5 3.3

Rise time 235p 200p 110p 111p
Fall time 131p 131p 82p 103p

Pmos width 6.0 6.0 8.4 8.4
Nmos width 6.0 6.0 8.4 8.4

Above: Tabulated data for typical process corner

Above: Standard and high-voltage x3 and x4 inverters are simulated with their
respective load. 2.5v and 3.3v supplies for the hv parts are simulated to check the
switching point is a safe margin from the 1.8v supply. Transient results are shown on
the left (500ps per major division), DC sweep shown on the right.

Above: Standard and high-voltage x3 and x4 inverters are simulated with their
respective loads at 1.8v, 2.5v and 3.3v supplies in three process corners.

Logic simulation: Monostables

Two monostables were designed with delays in ratio 1:3. These can provide the reset
timing for the pre-sample pixel, and also the correct length hit pulse for the preshape
pixel. The graph and table below allow the desired timing to be selected by setting
the appropriate bias current. The monostables can be triggered with a short or long
pulse, the output will be high for the desired time.

Above: Capacitor corners are checked since these will have the dominant effect on the
timing. The timing ratio remains consistent, so the external control would allow the
circuits to be trimmed to the desired time delays. These circuits can be evaluated on
ASIC1 to determine how localalised the control of these needs to be.

Bias current “200ns” monostable
output

“600ns” monostable
output

215nA ~250nS pulse ~750nS pulse
265nA ~200nS pulse ~600nS pulse
350nA ~150nS pulse ~450nS pulse

A monte-carlo simulation is
run to check the mismatch
effects on the monostable
circuits.

An accidental scaling of the
formula used in the monte-
carlo setup means these
results must be multiplied
by 3 to yield correct results:

 Mu = 149.523ns

Sd = 8.763ns

Mu = 466.236ns
Sd = 29.047ns

Logic simulation: 1 bit SRAM registers: Data Sense (readout)
Simulation top level = “sim_sram_reg_parasitics”

Circuit stimulus/scenario

SRAM operation is evaluated using a bank of 19 1-bit registers at various points along
a full-length readout column (ie near sense amplifier, mid way along and furthest
from sense amplifier).

Signal line model consists of series resistance of 8 ohms and capacitance to ground
for each pixel (50um). Capacitance is estimated at 10fF for parasitics; a further 30pF
is added to account for the 18 other SRAM cells that are disconnected from the line
(Drain of 0.5um wide inactive NMOS device).

Simulation variables

icompbias1 = 6u unitR = 8
icompbias2 = 16u unitC = 40f

Results waveforms

Above: Data sense amplifier internal signals: Current consumption ~75uA per bit.

Early simulation results with original OPIC sense amplifier, since superseded (see following section)
Some relevance remains hence this section is retained with this note.

Above: Signals from near/far/mid point along typical readout column.

Furthest cell data is sensed through 96 R-C load elements.
Interim cell data is sensed through 64 and 32 R-C load elements.
Nearest cell data is sensed directly at input to column amplifiers.

Above: Signals from near/far/mid point along very long readout column

Furthest cell data is sensed through 384 R-C load elements.
Interim cell data is sensed through 256 and 128 R-C load elements.
Nearest cell data is sensed directly at input to column amplifiers.

96 pixels = 4.8mm
 one of the four

pixel test structures
on ASIC1

385 pixels =
19.2mm longer
lines are possible at
slower speeds

Above: Signals from near/far/mid point along very long readout column: Corners.

Data delay is between 30ns and 70ns.

Above: Sensed data output for mismatch monte-carlo statistical analysis
~15Mhz maximum readout rate is shown to be possible, (10Mhz is simulated)

SRAM overdrive strength

Basic SRAM cell is a pair of cross-coupled inverters that must be overpowered to
write new data. Therefore it is important to understand the strength required to
overpower a SRAM cell – if too many cells were written from the same data (ie the
timestamp signal) they might become corrupted.

Driving cell
(SRAM Write signal)

Process
corner

x3_hv (2.5v) x3 (1.8v)

SS 9 0
SF 8 0
TT 10 11
FS 10 10
FF 11 12

Above: Number of active SRAM cells that can be overpowered (successfully written).
This data indicates the need to overdrive the write transistor for reliable SRAM
operation in all process corners. This information is also important to ensure
timecode buffers are not expected to drive too many rows, maximum 8. Monte-Carlo
simulations also show that a data driver cell of weaker strength is insufficient and
results in corrupted data.

Logic Simulation: Data Sense (reduced current)

The circuit is operated in reduced current mode as detailed in the table below:

Data Column Static current bias 10uA
 Mirrored 4:1 onto line as 2.5uA
SRAM cell Current sink for ‘zero’ 5uA
 Current sink for ‘one’ 0
Data Sense 3.3v bias ref 13uA
 Total in sense amplifier 10.4uA

Results

Above: Process corner variations have negligible effect on the operation of this
circuit. The bias circuit (which was originally designed for the OPIC project)
includes stacked transistors to try to maintain consistent switching performance in
different process corners; this seems to be working in this process also, and has not
been modified.

90ns

46ns

Read
asserted

Above: Zoomed operation for cell accesses at the near and far ends of a 25mm data
column. These simulations indicate a 5Mhz SRAM readout rate will possible from
the full-sized ASIC2.

Monte carlo simulations for the furthest cell report the following delay statistics from
assertion of read-enable to valid data appearing at the column base:

mu 82 ns
sd 17 ns
N 70

 Logic Simulation: SRAM shift register cell

The SRAM shift register cell and waveform timings are illustrated below.

DA

B C

Ф1

Ф2b

Ф2 Ф2

Dout

RstB

A

B

C

D

Ф1 Ф2 Ф2 Ф1

new input new input

‘0’

RstB

‘0’ ‘1’

from prev.

• During phi1 the SRAM cell holds its own state with two cross-coupled
inverters.

• As phi2 switches on, node A is updated with the new input state (connected

from previous SR cell through a phi2 switch). Node B updates accordingly.
At the same time switch phi2b switches off, thus allowing the cell to drive its
current state at the output without corruption from the new input.

o RACE CONDITION
o Node B is updated with the new value at node A. Node A must not be

allowed to propagate through the inverter and phi2b switch to the node
C (where it would corrupt the cell’s previous data).

o The undesirable signal path includes an extra inverter with respect to
the desirable signal sequence, therefore the race condition will result in
the desired outcome.

• During phi2 the SRAM cell drives its stored state to the next cell (connected to

node D through a phi2 switch). The stored state is held on node C, comprising
parasitic and gate capacitances of the inverter.

• As phi2 switches off the cell becomes isolated from its neighbour, and switch

phi2b closes to update node C with the new state.
o RACE CONDITION
o Node C is updated with the new value at node B. Node C must not be

allowed to propagate through the inverter and phi2 switch to the output
node and into the next cell (where it would corrupt data at node A).

o The undesirable signal path includes an extra inverter and phi2 switch
with respect to the desirable signal sequence, therefore the race
condition will result in the desired outcome.

o An intermediate value may be sampled on the parasitic capacitance
between two SR cells – this would not affect the correct operation of
the SR cell.

• As phi1 switches on the cell completes the internal feedback loop and the new

state is stored indefinitely (whilst powered).

A

B

C

D

Above: Corner simulations showing the internal nodes in the SR cell. The race
conditions at both edges of phi2 behave correctly.

C

A

Errors due to
race hazards
do not occur

Above: Mismatch Monte Carlo (100 runs) to check performance is robust in race
conditions.

Logic simulation: Bi-Directional SRAM shift register
Simulation top-level = “sim_sram_shift20”

The bidirectional shift register generates the read and write pointers for the SRAM
memory bank. After power-on it could be in an unknown state, so the initialisation
routine requires the shift register to be clocked in the backwards direction for 20
clocks to ensure all elements are programmed to zero.

In normal operation the register is clocked once in the forward direction to initialise,
and then once again for each register that must be written. During readout mode the
register is clocked once in backward direction to initialise, then combinational logic
enables each row to access each of its valid registers sequentially until the column
read is complete.

If >19 forward (“write”) clocks are received the register outputs a “full” wired-or
signal, and will correctly read back the first 19 registers that were written.

Above: Typical operation, showing 5 clocks in the forward direction, then 25 clocks
in the reverse direction, of which the first 5 act upon the shift register and replay those
registers that were written-to. The shift register thereafter ignores any further phi2
clocks and sets the “Done” signal (combinational NOR of all 20 bits).

Above: Overflow condition: 25 hits are simulated, note that reg 0 remains active
beyond the 20th hit – this is used to generate the overflow signal, and ensures that
when clocked backwards the shift register has not lost its token so that readout of the
other 19 registers is achieved (as illustrated).

Above: Correct operation verified in process corners SS,TT,FF.

Logic simulation: Bi-Directional SRAM cells

The standard SRAM shift register cell is adapted to make it bi-directional as
illustrated below.

D A

B C

Ф1

Ф2b

Ф2 Ф2

rstB

fwd

fwd

bck

bck

‘1’

The last cell must be modified such that it will hold the token rather than lose it if
clocked again (robust operation in overflow conditions) and also ensure that a ‘0’ is
driven as the cell input when in backwards mode.

D A

B C

Ф1

Ф2b

Ф2 Ф2

rstB

fwd bck

bck

‘1’

The “bi-directional” and “endstop” shift register cells are arranged to form a 20-
element shift register. A logical NOR generates the SR input in the fwd mode such
that either after reset or one forward clock cycle when empty, the register is reset to
the default condition 10000000000000000000.

fwd bck

Results Waveforms

20ns

hits readout

Above: Typical operation involving 5 consecutive hits (ie all in the same 42-pixel
section). These simulations are run at ~50Mhz to check operation is possible at the
target 150ns bunch-crossing rate.

Above: The overflow condition is verified – the register is clocked for 25 hits. The
circuit can be seen to hold the token at position 0 and then assert each enable line for
all the registers back to 19.

Logic simulation: Latch-Hold circuits

Logic simulation: Mask & Config programming

Each pixel contains a 5-bit SRAM shift register, arranged such that each column
forms a long shift register. Global clocks are distributed along each row. Pixels
buffer and generate the compliment clocks internally to ensure clean clock waveforms
for the SRAM shift register cells.

Pixel operation

Reset

Latch

Reset occurs during phi2. Input data is latched on the falling edge of phi2. In the
example above a single ‘one’ is shifted through the SR. In the real system, data is
shifted in as TRIM-LSB first with the MASK as the final bit. The full string of 5-bit
codes in this order are shifted through the column.

System operation

phi1, phi2, RstB 100 pixels in row

Above: Diagram representation of the phi1/phi2 non-overlapping clock distribution
simulation for a section the mask shift register. Each pixel generates clk and clkb
from the column clock to ensure edges are quick and a true-complement to ensure
correct operation of the SR cells. Distributed RC models for the long signal lines are
inserted to model a row of 100 pixels. Clock drivers of strength x4 are used to drive
the long row and column lines.

The triple-inverter clock buffering scheme is used to ensure local edges are fast and
true compliment. Three buffers per pixel (x2 for two clocks) will all switch in the
same time window, thus the current drawn could be significant during mask
programming. Care must be taken to ensure power tracking is wide enough to
minimise power droop. Since these cells are not used during normal operation the
power net can be shared with other circuits.

Above: Operation is demonstrated at 1Mhz for 100 parallel shift registers. 50ns
separation of the non-overlapping clocks ensures correct operation. Edges of around
12ns are seen on the global clocks (these are buffered and the complement generated
in-pixel to ensure good clock integrity).

Left: Local clock buffering
ensures the potentially slow
row clock signals are fast
and true compliment.

Logic simulation: Full pixel ‘slice’ simulation

LOGIC

SRAMS

VERILOG TESTBENCH

PIX

PIX

PIX

BIAS

SENSE 42 pixels

SIM HITS

The diagram above depicts the slice simulation including 42 pixels, the master row
controller, 19 SRAM registers and data sense amplifiers. This simulation omits any
mask or trim programming to reduce the simulation time (all channels are enabled).

The testbench initialises the logic and waits for the analog to settle/power-up. The
logic is then sequenced as per bunch-train operation, and simulated hits are applied to
different pixels at different times. The logic detects and stores the hit location and
time, which is then read out and displayed in the simulation log after the bunch train
is complete (16 crossings).

@8330

@8780

@9530

Pix 7

Pix 17 Pix 30

Pix 29 Pix 16

Mask register = 111111000000111111111111111111111111111111 at initialisation
Hit pattern = 00 at initialisation
Mask programming omitted.
Clear & Initialise the SR control registers
SR Clear complete
SR Initialisation complete
Latch current Hit Pattern... 7730
Latch current Hit Pattern... 7880
Latch current Hit Pattern... 8030
Latch current Hit Pattern... 8180
Latch current Hit Pattern... 8330
Latch current Hit Pattern... 8480
Latch current Hit Pattern... 8630
Latch current Hit Pattern... 8780
Latch current Hit Pattern... 8930
Latch current Hit Pattern... 9080
Latch current Hit Pattern... 9230
Latch current Hit Pattern... 9380
Latch current Hit Pattern... 9530
Latch current Hit Pattern... 9680
Latch current Hit Pattern... 9830
End of bunch train.
Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001101
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001101010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001101
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001101000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001000
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000001000101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000101
 >> BANK = 100
 >> PATT = 000010
 >> DATA = 0000000000101100000010

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

0x0D

0x0D

0x08

0x05
Pix 7

Pix 16

Pix 17

Pix 29

Pix 30

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

TT
SS
FF

41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Pixel # Address
Code to
Select Bank

100

101

111

110

010

011

001

Internal
node Sel#

6

5

4

3

2

1

0

Address Code
written to
SRAM

011

010

000

001

101

100

110

Data code
hit bit
ordering

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

XXX

DataCode[8] DataCode[6]

DataCode[0]

DataCode[5]

Logic Simulation: Full Pixel Slice Including Masking
This is a subsequent revision of the simulation above to include the mask and trim
programming control. Analog hits are generated in pixels 7, 16, 17, 29 and 30 as
shown below. The mask register is set to deactivate pixels 6 11 inclusive.

Results Transcript
The corresponding hit data is seen in the excerpt from the simulation log below. The
hit on pixel 7 has correctly been masked. Note also that the hit on pixel 30 appears
twice in the transcript – this is a double hit (see below).

Readout phase:
SR Initialisation complete
 >>

D
ou

bl
e

H
it!

!!
 >> HIT INFO: TIME = 0000000001100

Pixel 30 at time 1100 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001100010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011

Pixel 30 at time 1011 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001011010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011

Pixel 29 at time 1011 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001011000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000111

Pixels 16&17 at time 1100 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000000111101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 -
 -
 -

The double hit seen in the simulation deserves further investigation:

“HIT” signal
from pixel

“Hold” sampling
every 150ns

Latched Masked
Hit flags
processed by
logic

Looking at the internal signals for pixel 30 shows that the rising edge of the hit signal
occurs at approximately the same time as the “hold” sampling. The duration of the hit
signal is measured to be 157ns, which means it is sampled as active (high) on two
consecutive occasions. This shows how a double-hit might occur.

Whilst it is interesting that this did occur in simulation, we consider the probability of
this occurring to be low, since it depends on so many variables (some of which are
artificially generated in the simulation). A full analysis would involve much analysis
from many device and circuit simulations and is probably impractical! (Discussion
welcome)

If double-hits are seen during testing, this might indicate that the biasing of the
monostables is too high. In this case the “mso_bias” that controls the timing of the hit
pulse can be adjusted until double-hits cease to appear. Note however that adjusting
the bias too low would make the “HIT” signal pulse much less than 150ns, in which
case hits could be dropped altogether if a similar set of timing circumstances occur.

End of bunch train.
Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001100010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001100000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001011000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000111
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000000111101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 -
 -
 -
 -
 -
 - SS

Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001100010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001011010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001011000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000111
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000000111101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 -
 -
 -
 -
 -
 -

FF

Logic Simulation: Row Encoder

The basic structure of the row encoder is illustrated below. The function of this block
is to report at the column base the row address of the cell that is currently being read.
To minimise re-design effort for ASIC2 the full 9 bits are implemented, although only
7 are strictly required for the ASIC1 test structure. The row addresses are assigned in
a GRAYCODE order.

Tied to VDD
or GND to
form unique
row address

N bits

RowReadActive

Shared column
address bus.

The active cell drives the column bus with its own unique code. To avoid large
current surges the inverter cells are current limited; this makes the column bus
rise/fall time longer, but high-speed operation during the readout phase is not
necessary.

Simulations

A row-encoder of 84 cells is simulated.

Two RowReadActive signals are applied in sequence to the near and far ends to
compare signal timing. An R-C model is used between each row encoder cell to
model the likely real conditions. Current is monitored during switching.

A Verilog stimulus is used to individually excite each of the 84 enable
(RowReadActive) signals and print to screen the address code that is seen at the base
of the column. This text file is imported into excel and processed to check that no
repeated codes are seen in the 84-code set.

Results Waveforms

Current during
switching.

20uA 70uA

40ns Cell select

Column output
after buffering

Column lines

Above: Row encoder outputs (for near and far cells) are shown at the column base.
The current is limited to 20uA per switching signal (this may be adjusted by external
bias current). The response time is effectively the time taken to charge the parasitic
line capacitance with a DC current of 20uA. The line behaves as a single capacitor,
not a transmission line, therefore no difference is seen between the response from the
nearest/furthest cell.

Readout at 1Mhz could easily be achieved with this row encoder.

Address = 001111010
Address = 001111011

Left: Mixed-mode simulation output log excerpt.

Importing this data into excel, converting to
decimal and sorting confirms there are no repeated
codes.

Note that the bus ordering is such that the enables
input bus’ MSB corresponds to the address 0.

Below: Each enable signal is raised in turn to
generate the data output shown on the left.

The condition when more than one enable signal is
raised will cause conflict on the address bus and
draw additional current. This scenario should be
avoided – since the enable inputs are derived from
the readout logic where only one cell is accessed at
any one time this condition should be assured.

Address = 001111001
Address = 001111000
Address = 001101000
Address = 001101001
Address = 001101011
Address = 001101010
Address = 001101110
Address = 001101111
Address = 001101101
Address = 001101100
Address = 001100100
Address = 001100101
Address = 001100111
Address = 001100110
Address = 001100010
Address = 001100011
Address = 001100001
Address = 001100000
Address = 000100000
Address = 000100001
Address = 000100011
Address = 000100010
Address = 000100110
Address = 000100111
Address = 000100101
Address = 000100100
Address = 000101100
Address = 000101101
Address = 000101111
Address = 000101110
Address = 000101010
Address = 000101011
Address = 000101001
Address = 000101000
Address = 000111000
Address = 000111001
Address = 000111011
Address = 000111010
Address = 000111110
Address = 000111111
Address = 000111101
Address = 000111100
Address = 000110100
Address = 000110101
Address = 000110111
Address = 000110110
Address = 000110010
Address = 000110011
Address = 000110001
Address = 000110000
Address = 000010000
Address = 000010001
Address = 000010011
Address = 000010010
Address = 000010110
Address = 000010111
Address = 000010101
Address = 000010100
Address = 000011100
Address = 000011101
Address = 000011111
Address = 000011110
Address = 000011010
Address = 000011011
Address = 000011001
Address = 000011000
Address = 000001000
Address = 000001001
Address = 000001011
Address = 000001010
Address = 000001110
Address = 000001111
Address = 000001101
Address = 000001100
Address = 000000100
Address = 000000101
Address = 000000111
Address = 000000110
Address = 000000010
Address = 000000011
Address = 000000001
Address = 000000000

Hit 0

Hit 1

Hit 83

Hit 41

Logic Simulation: Driving Long Column Signals

The master-controller logic is stripped of all functionality and only the input gates are
left. This dummy block is instantiated 84 times with RC line models and driven with
x4 strength buffers to check the clock and control signals can be operated at the
required speeds.

Results Waveforms

Above: Internal to each row, phi1 clock edges differ by <1ns between the top and
bottom cells in the 84-high column. The blue trace shows the true clock signal on the
shared column line that distributes the clock. The internal buffering within each row
ensures the local clock edges are fast and true compliment.

The other control signals (fwd, hold, init etc) are buffered with the same x4 buffer,
and loaded in the same way as the clocks (a single input port on an inverter/logic cell)
at each row. This simulation is taken as verification for the buffering and operating
speed of all these control signals.

40ns

2ns

Above: The wired-or used to indicate overflow is seen to respond quickly on the
occurrence of overflow, but is much slower to respond once the overflow has cleared.
This is primarily a debug feature and therefore operation speed is unimportant;
functionality is verified.

Above: The read-enable signal propagates from the bottom to the top of the column
(since the dummy cells are all un-hit). The 17ns delay is the typical time taken for the
read token to pass through all 84 cells this varies by up to 3ns in process corners.
This sets a realistic maximum readout clocking rate of 25Mhz (assuming the token is
collected and reset for a clock cycle after every 84-pixel stretch.) This operating
speed is more than enough for the data rates of this project, especially if columns are
operated in parallel.

17ns

14ns FF

TT

SS 20ns

Logic Simulation: Three Master-Controllers + Row Encoder

The diagram below depicts the system simulation to check integration of several key
circuit blocks in a logic column formation. 17 hits are applied in 3 time divisions.

CONTROLLER

SRAMS

CONTROLLER

SRAMS

CONTROLLER

SRAMS

VERILOG TESTBENCH

R
O

W
 E

N
C

O
D

ER
 (8

4)

83

41

0

ADDR

Mid Hits

Top Hits

Bot Hits
R

ea
dE

n

Results
 111111111 110000101 111000000 111111111

Address Bus

Read Enables

RowReadActive(s)

Above: Inverted row addresses during readout from ‘Bot’, ‘Mid’ & ‘Top’ memories.
Below: Verilog simulation log excerpt with colour-coded annotations to aid reading.

>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 100
 >> PATT = 011100
 >> DATA = 0110111001111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 001
 >> PATT = 000100
 >> DATA = 1100001001111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 100
 >> PATT = 100000
 >> DATA = 0111000001111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 100
 >> PATT = 100000
 >> DATA = 0111000001111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 100
 >> PATT = 001110
 >> DATA = 0110011101111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 001
 >> PATT = 001000
 >> DATA = 1100010001111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 100
 >> PATT = 100000
 >> DATA = 0111000001111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Clear & Initialise the SR control registers
SR Reset complete
Top Hit pattern = 000111000110000101000100000011000010000001 at time 173
Mid Hit pattern = 00 at time 173
Bot Hit pattern = 1001 at time 173
>> Latched.
Top Hit pattern = 1001 at time 465
Mid Hit pattern = 001110000000000000000000000000000000001000 at time 465
Bot Hit pattern = 00 at time 465
>> Latched.
Top Hit pattern = 00 at time 657
Mid Hit pattern = 1001 at time 657
Bot Hit pattern = 011100000000000000000000000000000000000100 at time 657
>> Latched.
End of bunch train.
Readout phase:
SR Initialisation complete

>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 100
 >> PATT = 000111
 >> DATA = 0110001111111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
>> HIT INFO: TIME = 0000000000001
 >> BANK = 101
 >> PATT = 000110
 >> DATA = 0100001101111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 111
 >> PATT = 000101
 >> DATA = 0000001011111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 110
 >> PATT = 000100
 >> DATA = 0010001001111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 010
 >> PATT = 000011
 >> DATA = 1010000111111111111110

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 011
 >> PATT = 000010
 >> DATA = 1000000101111111111110

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-
-
-
-

1

2

3

1

1

3

3

3

3

1

2

2

2

2

1

1

1

1

1

1

100 101 111 110 010 011 001 Bank assignment codes =

Time stamp

	 LOGIC Simulations
	Dialogue
	
	
	Results waveforms
	 Logic simulation: HV Logic Cells
	
	 Logic simulation: Monostables
	 Logic simulation: 1 bit SRAM registers: Data Sense (readout)
	Circuit stimulus/scenario
	Results waveforms
	
	
	SRAM overdrive strength

	 Logic Simulation: Data Sense (reduced current)
	Results

	 Logic Simulation: SRAM shift register cell
	 Logic simulation: Bi-Directional SRAM shift register
	 Logic simulation: Bi-Directional SRAM cells
	Results Waveforms

	 Logic simulation: Latch-Hold circuits
	 Logic simulation: Mask & Config programming
	Pixel operation
	 System operation

	Logic Simulation: Full Pixel Slice Including Masking
	Results Transcript

	 Logic Simulation: Row Encoder
	Simulations
	
	 Results Waveforms

	 Logic Simulation: Driving Long Column Signals
	Results Waveforms
	Results

