
 Page 1 of 54

LOGIC SIMULATIONS ... 2

DIALOGUE.. 2
LOGIC SIMULATION: LOGIC CELL DRIVE STRENGTH.. 3
LOGIC SIMULATION: HV LOGIC CELLS .. 5
LOGIC SIMULATION: MONOSTABLES.. 7
LOGIC SIMULATIONS: SRAM REGISTER... 12
LOGIC SIMULATION : DATA OUTPUT MULTIPLEX .. 18
LOGIC SIMULATION : SRAM SHIFT REGISTER CELL.. 20
LOGIC SIMULATION: BI-DIRECTIONAL SRAM CELLS... 24
LOGIC SIMULATION: BI-DIRECTIONAL SRAM SHIFT REGISTER.. 27
LOGIC SIMULATION: LATCH-HOLD CIRCUITS... 29
LOGIC SIMULATION: 3-CLOCK SR CELL.. 32
LOGIC SIMULATION: MASK & CONFIG PROGRAMMING (SHIFT5) .. 34
CONFIGURATION “SLOW” CLOCKS... 36
LOGIC SIMULATION : FAST CONFIG SHIFT REGISTER.. 38
OVERVIEW: CONFIGURATION PROGRAMMING AND VERIFICATION... 40
SIMULATION RESULTS.. 41
LOGIC SIMULATION: FULL PIXEL ‘SLICE’ SIMULATION ... 42
LOGIC SIMULATION : FULL PIXEL SLICE INCLUDING MASKING .. 45
LOGIC SIMULATION : ROW ENCODER.. 47
LOGIC SIMULATION : ROW ENCODER.. 48
LOGIC SIMULATION : DRIVING LONG COLUMN SIGNALS .. 49
LOGIC SIMULATION : DRIVING LONG COLUMN SIGNALS .. 50
LOGIC SIMULATION : THREE MASTER-CONTROLLERS + ROW ENCODER.. 52

Logic & Top-Level Simulations [v1.0]

 Page 2 of 54

LOGIC Simulations

Dialogue

This is a summary of the logic cells for review at IDR.

This is a long document, intending to cover all aspects of the digital control circuits
on the ASIC1 test structure, starting with individual logic gates and including mixed-
mode simulations incorporating Verilog stimulus, full row-controller custom logic,
SRAM memory banks and analog pixels.

Dialog is included after results where appropriate – the contents of this document will
be discussed in more detail in the IDR.

 Page 3 of 54

Logic simulation: Logic Cell Drive Strength
Simulation top-level = “sim_inverter”

Logic inverters were designed with different drive strengths. Functional logic blocks
(2 and 3 input NAND and NOR gates) were designed to the minimum drive strength
only.All transistors used are 1.8v parts to reduce power consumption.

Cell variant x0 x1 x2 x3 x4

Test load 10fF 30fF 55fF 90fF 125fF

Rise time 132p 129p 133p 125p 125p
Fall time 113p 120p 127p 129p 133p

Pmos width 0.8 2.0 3.5 6.0 8.4
Nmos width 0.3 0.8 1.4 2.2 2.9

Above: Tabulated results for typical process corner. Rise and fall time (for these
tests) are recorded as the transition time between 15% and 85% of the full-scale 1.8v
signal.

Results waveforms

Above: Inverters of each strength variant are simulated together with their
corresponding test load. Transient waveforms are shown on the left (50ps per
division); DC sweep to determine switching point is shown on the right.

 Page 4 of 54

Above: Inverters and logic gates of each strength variant are simulated together with
their corresponding test load in all process corners. Transient waveforms are shown
on the left (100ps per division); DC sweep to determine switching point is shown on
the right: spread approx 200mV.

 Page 5 of 54

Logic simulation: HV Logic Cells
Simulation top-level = “sim_inverter”

Specifically and only for driving the write transistor of the SRAM cells, inverters for
high voltages (>1.8v) were created: The x3_hv and x4_hv strength inverters are
copies of their low-voltage equivalents, with the nmos transistor enlarged to the same
dimensions of the pmos. The equal transistor sizing lowers the switching point such
that these cells could safely be used with a 1.8v logic input (and guarantees that ‘1’
and ‘0’ are both correctly identified, although the noise margin on a ‘1’ will be
smaller). Increasing the size of the nmos device means the rise- and fall-times of
these devices are compromised (unequal).

Cell variant x3_hv x3_hv X4_hv X4_hv

Test load 90fF 90fF 125fF 125fF
VDD 2.5 3.3 2.5 3.3

Rise time 235p 200p 110p 111p
Fall time 131p 131p 82p 103p

Pmos width 6.0 6.0 8.4 8.4
Nmos width 6.0 6.0 8.4 8.4

Above: Tabulated data for typical process corner

Above: Standard and high-voltage x3 and x4 inverters are simulated with their
respective load. 2.5v and 3.3v supplies for the hv parts are simulated to check the
switching point is a safe margin from the 1.8v supply. Transient results are shown on
the left (500ps per major division), DC sweep shown on the right.

 Page 6 of 54

Above: Standard and high-voltage x3 and x4 inverters are simulated with their
respective loads at 1.8v, 2.5v and 3.3v supplies in three process corners.

 Page 7 of 54

Logic simulation: Monostables

Two monostables were designed with delays in ratio 1:3. These can provide the reset
timing for the pre-sample pixel, and also the correct length hit pulse for the preshape
pixel. The graph and table below allow the desired timing to be selected by setting
the appropriate bias current. The monostables can be triggered with a short or long
pulse, the output will be high for the desired time.

Above: Capacitor corners are checked since these will have the dominant effect on the
timing. The timing ratio remains consistent, so the external control would allow the
circuits to be trimmed to the desired time delays. These circuits can be evaluated on
ASIC1 to determine how localalised the control of these needs to be.

Bias current “200ns” monostable
output

“600ns” monostable
output

210 nA 250 ns 798 ns
265 nA 200 ns 637 ns
360 nA 150 ns 476 ns

(These circuit simulations have been updated and re-simulated using NW capacitors.)

 Page 8 of 54

Above: Example operation in all
5 process corners. Key circuit nodes
are identified on the schematic below.

A

B C D

POR PORb

C

D

B

A

 Page 9 of 54

The monostable circuit is designed with the “power-on-reset” input which minimises
current consumption at power-up. The power is turned on at time 1us in the
simulation. The POR input is held high from time 0 and released after 1.25us.

Above: The currents flowing in the monostable circuit during power-up. The pink
traces show the circuit operation without the power-on-reset. The blue show the more
satisfactory operation where current flow is minimized.

Total current in cell

Output pulse during
power-on

Inverter current

NOR current

 Page 10 of 54

Above: Monte Carlo mismatch simulations show the likely spread in the pulse
duration from the two monostable circuits at one particular setting.

 Page 11 of 54

Above: Using a single monostable circuit to generate the POR signal for all the other
monostable circuits (external access is also provided for full control).

POR

ExtRstMono

 Page 12 of 54

Logic simulations: SRAM register

The basic SRAM register is illustrated below:

The cross coupled inverters are made from minimum size transistors, and must be
overpowered to successfully overwrite their state. Note the readout mechanism is
current mode, hence the data column connection is via a pull-down transistor. This
ensures the load driven by the inverter cell is kept very small – a large load could also
destroy the stored state.

SRAM overdrive strength

It is important to understand the strength required to overpower a SRAM cell – if too
many cells were written from the same data (ie the timestamp signal) they might
become corrupted.

Driving cell
(SRAM Write signal)

Process
corner

x3_hv (2.5v) x3 (1.8v)

SS 9 0
SF 8 0
TT 10 11
FS 10 10
FF 11 12

Above: Number of active SRAM cells that can be overpowered (successfully written).

This data indicates the need to overdrive the write transistor for reliable SRAM
operation in all process corners. A high-voltage tolerant transistor must be used for
the write transistor (these have a larger minimum size and therefore will make the
SRAM layout larger than previously estimated).

This information is also important to ensure timecode buffers are not expected to
drive too many rows, maximum 8. Monte-Carlo simulations have shown that a driver
cell of weaker strength (ie x2) is insufficient and results in corrupted data.

WR RD

Din

 Dout
Column

 Page 13 of 54

Example operation

Above: Internal 2.5v write signal successfully overwrites the SRAM (the internal BIT
and BITb nodes) with the input state.

Input
Data ‘0’

Input
Data ‘1’

Write pulse
2.5v
20ns

Write pulse
2.5v
20ns

 Page 14 of 54

Right: Monte carlo simulation
(N=250) shows 4 failed write
attempts. The write transistor is
the critical component for this
circuit action and has probably
been down-sized in the extreme
corners of the monte-carlo
variations.

The write transistor can be driven with up to 3.3v in the event that SRAM writing
fails. The write transistor can be enlarged slightly in the layout, which will also help
to guard against this rare write failure. Updating just the write voltage to 3.3v the
monte-carlo simulation is run again:

Right: Monte carlo
simulation (N=250)
shows 100% success with
the write transistor driven
at 3.3v.

 Page 15 of 54

Logic Simulation: Data Sense

The circuit is operated in reduced current mode as detailed in the table below:

Data Column Static current bias 10uA
 Mirrored 4:1 onto line as 2.5uA
SRAM cell Current sink for ‘zero’ 5uA
 Current sink for ‘one’ 0
Data Sense 3.3v bias ref (pad) 130uA
 3.3v bias ref (local) 13uA
Inverter (comp) Switching current limited to 5uA

Total in sense amplifier

15.4uA

The circuit is simulated with models for full line resistance and capacitance. The full
reticle size has been verified, although this will not be implemented until ASIC2.
Results for ASIC1 are also checked, although this performance will be faster due to
the smaller distances involved.

SRAM

SRAM

SRAM

SRAM

~2mm

~2mm

~2mm

~2mm

SRAM

SRAM

SRAM

SRAM

~6mm

~6mm

~6mm

~6mm

0

1

2

3

0

1

2

3

ASIC1 ASIC2

 Page 16 of 54

Results Waveforms

Above: Key circuit nodes are shown to demonstrate typical circuit operation. There is
little difference between the read times for near and far cells.

Read

Sense current

Comparator current

Sense output, input
to comparator

Column current

Data output

-2.5uA

+2.7uA

Nearest
Cell

Furthest
Cell

 Page 17 of 54

Above: Process corners simulated to show the variation in data sense times.
Allowing 200ns for each read permits readout at 5Mhz.

130ns ± 20ns

Read

Sense current

Comparator current

Column current

Data output

 Page 18 of 54

Logic Simulation: Data output multiplex

The diagram below shows how the data sense amplifiers are multiplexed to a single
31bit parallel output

Above: Internal select lines as decoded from 2-bit Gray code ADDR input.

D
E

C
O

D
E

R

Sel3 Sel2 Sel1 Sel0

31 31 31 31

ADDR[1:0] DMUX[30:0]

31

x3 x3 x3 x3

Sel0

Sel1

Sel2

Sel3

ADD0

00 01 11 10 00 01 11 10

ADD1

 Page 19 of 54

The circuit is primed with test data values at the multiplexer inputs. The multiplex
address are cycled through the four states. Only the four LSBs are plotted for clarity.
This simulation must demonstrate the x3 inverters can drive the common output line
including RC loading.

Above: Annotated digital data output from the multiplexer. Sel à Data delay is
approx 25ns with the estimated line loadings (acceptable for 10Mhz performance).

D
E

C
O

D
E

R

Sel3 Sel2 Sel1 Sel0

31 31 31 31

ADDR[1:0] DMUX[30:0]

31

x3 x3 x3 x3

…0010 …0011 …0100 …0001

00 01 11 10

MUX
ADDR

1

0

0

0

0

0

0

1

1

0

1

0

0

0

1

0

3

1

2

0

2

3

D
A

T
A

 O
U

T
P

U
T

 [
3:

0]

 Page 20 of 54

Logic Simulation: SRAM shift register cell

The SRAM shift register cell and waveform timings are illustrated below.

D A

B C

1

2b

2 2

Dout

RstB

 Page 21 of 54

• During phi1 the SRAM cell holds its own state with two cross-coupled
inverters.

• As phi2 switches on, node A is updated with the new input state (connected

from previous SR cell through a phi2 switch). Node B updates accordingly.
At the same time switch phi2b switches off, thus allowing the cell to drive its
current state at the output without corruption from the new input.

o RACE CONDITION
o Node B is updated with the new value at node A. Node A must not be

allowed to propagate through the inverter and phi2b switch to the node
C (where it would corrupt the cell’s previous data).

o The undesirable signal path includes an extra inverter with respect to
the desirable signal sequence, therefore the race condition will result in
the desired outcome.

• During phi2 the SRAM cell drives its stored state to the next cell (connected to

node D through a phi2 switch). The stored state is held on node C, comprising
parasitic and gate capacitances of the inverter.

• As phi2 switches off the cell becomes isolated from its neighbour, and switch

phi2b closes to update node C with the new state.
o RACE CONDITION
o Node C is updated with the new value at node B. Node C must not be

allowed to propagate through the inverter and phi2 switch to the output
node and into the next cell (where it would corrupt data at node A).

o The undesirable signal path includes an extra inverter and phi2 switch
with respect to the desirable signal sequence, therefore the race
condition will result in the desired outcome.

o An intermediate value may be sampled on the parasitic capacitance
between two SR cells – this would not affect the correct operation of
the SR cell.

• As phi1 switches on the cell completes the internal feedback loop and the new

state is stored indefinitely (whilst powered).

A

B

C

D

Ф
1

Ф
2

Ф
2

Ф
1

new input
*

new input
*

‘0’

RstB

‘0’ ‘1’

from prev.

 Page 22 of 54

Above: Corner simulations showing the internal nodes in the SR cell. The race
conditions at both edges of phi2 behave correctly.

Above: Mismatch Monte Carlo (100 runs) to check performance is robust in race
conditions.

A

B

C

D

C

A

Errors due to
race hazards
do not occur

 Page 23 of 54

Above: SRAM reset is shown in detail. Bit 12 of the shift register is currently active;
the reset sets this to zero along with all other bits in the shift register; This sets the
local OR evaluation to true (signal SHIFT_IN_CHK; also generates the “Done” signal
for readout control) which sets the input to the first register (bit 19) high. Thus the
shift register is reset to its initial
state, 10000000000000000000.

Right: Process corner variations
from above.

Reset

Phi2

SR state

Feedback
OR node

 Page 24 of 54

Logic simulation: Bi-Directional SRAM cells

The standard SRAM shift register cell is adapted to make it bi-directional as
illustrated below.

The last cell must be modified such that it will hold the token rather than lose it if
clocked again (robust operation in overflow conditions) and also ensure that a ‘0’ is
driven as the cell input when in backwards mode.

The “bi-directional” and “endstop” shift register cells are arranged to form a 20-
element shift register. A logical NOR generates the SR input in the fwd mode such
that either after reset or one forward clock cycle when empty, the register is reset to
the default condition 10000000000000000000.

D A

B C

Ф
1

Ф
2b Ф

2
Ф

2

rstB

fwd

fwd

bck

bck

‘1’

D A

B C

Ф
1

Ф
2b Ф

2
Ф

2

rstB

fwd bck

bck

‘1’

fwd bck end

 Page 25 of 54

Results Waveforms

Above: Typical operation involving 5 consecutive hits (ie all in the same 42-pixel
section). These simulations are run at ~50Mhz to check operation is possible at the
target 150ns bunch-crossing rate.

Above: The overflow condition is verified – the register is clocked for 25 hits. The
circuit can be seen to hold the token at position 0 and then assert each enable line for
all the registers back to 19.

20ns

hits readout

 Page 26 of 54

Above: Example operation at 50Mhz in all 5 process corners with R-C line models
included. 8ns pulses separated by 2ns are intact after a full 84 * 50 micron length.
SRAM operates correctly.

 Page 27 of 54

Logic simulation: Bi-Directional SRAM shift registe r
Simulation top-level = “sim_sram_shift20”

The bidirectional shift register generates the read and write pointers for the SRAM
memory bank.

In normal operation the register is clocked once each register that must be written.
During readout mode the register is clocked once in backward direction to initialise,
then combinational logic enables each row to access each of its valid registers
sequentially until the column read is complete.

If >19 forward (“write”) clocks are received the register outputs a “full” wired-or
signal, and will correctly read back the first 19 registers that were written.

Above: Typical operation, showing 5 clocks in the forward direction, then 25 clocks
in the reverse direction, of which the first 5 act upon the shift register and replay those
registers that were written-to. The shift register thereafter ignores any further phi2
clocks and sets the “Done” signal (combinational NOR of all 20 bits).

 Page 28 of 54

Above: Overflow condition: 25 hits are simulated, note that reg 0 remains active
beyond the 20th hit – this is used to generate the overflow signal, and ensures that
when clocked backwards the shift register has not lost its token so that readout of the
other 19 registers is achieved (as illustrated).

Above: Correct operation verified in process corners SS,TT,FF.

 Page 29 of 54

Logic simulation: Latch-Hold circuits
The structure below uses a ping-pong architecture to sample the hit signals on both
rising and falling edges of the Hold signal. This means the sampling “Hold” signal
can run at the ~6Mhz.

The “hit” states are stored on the gate capacitance of the second inverters. This
capacitance is small, but the state must be held for only 150ns.

Results Waveforms

Hold

HoldB

HoldB

Hold
Hit In Latched

Hit

Hold

Sampled
data

Sampled
data

Charge injection
for change on Din

 Page 30 of 54

Above: Typical operation is demonstrated in all 5 process corners. A small injection
of charge is seen on the floating storage node due to the adjoined switch.

Above: Simulation in all process corners is shown indicate the likely lifetime of this
small storage node. Taking 250us as a safe interval, the hold signal must be clocked
at a minimum of 4kHz to avoid charge loss effects.

 Page 31 of 54

Above: The hold signal is clocked at 300ns (ie 150ns sampling rate). A parasitic
extraction of a preliminary layout is simulated. The charge injection effect seems to
be reduced when parasitic capacitances are included.

 Page 32 of 54

Logic simulation: 3-clock SR cell
The SR cell can be driven with 3 clocks to completely eliminate the race condition.
This us most useful for mask programming where long clock lines will be driven
slowly – in these circumstances the true compliment needed for sucessfull operation
of the 2-clock SR cell would require local clock buffers in every pixel – which would
draw excessive current.

Results Waveforms

D A

B C

1

3

2 2

Dout

RstB

 Page 33 of 54

Above: Slow operation (100kHz) is verified in all process corners to ensure charge
leakage from transistor gates does not degrade performance at such low speeds.
Clock edges are loaded to achieve 50ns rise/fall times for realistic simulation.

 Page 34 of 54

Logic simulation: Mask & Config programming (shift5)

Each pixel contains a 5-bit SRAM shift register, arranged such that each column
forms a long shift register. Global clocks are distributed along each row. Pixels
buffer and generate the compliment clocks internally to ensure clean clock waveforms
for the SRAM shift register cells.

 Page 35 of 54

Pixel operation

Above: Example waveforms showing shift register functionality using the 3 phase
clocking scheme.

Reset occurs during phi2. Input data is latched on the falling edge of phi2. In the
example above a single ‘one’ is shifted through the SR. In the real system, data is
shifted in as TRIM-LSB first with the MASK as the final bit. The full string of 5-bit
codes in this order are shifted through the column.

 Page 36 of 54

Configuration “SLOW” clocks

Clock buffering is summarised below. Clock loads are made equal.

 Pixels

driven
Rows that
share

SRAMs per
pixel

Gates per
SRAM
using clk

Total load
(# gates)

Phi1 42 4 5 2 1680
Phi2 42 2 5 4 1680
Phi2 42 2 5 4 1680
Phi3 42 4 5 2 1680

Each 4-row section is repeated throughout the pixel array. Global clocks run
vertically to feed the large (x4) row buffers.

Phi2

Phi2

Phi3

Phi1

..42 cells..

..42 cells..

..42 cells..

..42 cells..

 Page 37 of 54

Results waveforms

Above: Config clocks along one line of 42 pixels. Rise times of ~25ns are consistent
between process corners. Switching current (per buffer) is ~300uA.

Estimated maximum switching current during programming of ASIC1 is 50mA,
although for slow clock rates this will average and smooth to a small fraction of this
peak figure.

 Page 38 of 54

Logic Simulation: Fast Config Shift Register

The input and readback fast shift registers are formed from the 2-phase SRAM shift
register cells. Each cell has its own local clock buffering which permits high speed
operation, but at higher power.

The input and readback shift registers are directly connected as illustrated below and
simulated at 100Mhz.

 Results Waveforms

(see next page).

100Mhz clock signals are seen to be intact and non-overlapping at both ends of the
row.

Current peak ~3mA for clock edges.

Note that a single cycle delay is seen in the readback shift register data due to the
parallel load architecture.

READBACK_OUT

LOAD_PARALLEL

DIN
SHIFT_OUT

 Page 39 of 54

 Page 40 of 54

Overview: Configuration programming and Verificatio n

“SLOW”
phi1, phi2, RstB

“FAST”
phi1, phi2, RstB

CONFIG_IN

CONFIG_OUT

“READBACK”
phi1, phi2, RstB

READBACK
_OUT

TEST_IN

PARALLEL_LOAD

2
*

84
 r

ow
s

2*84 columns

 Page 41 of 54

Simulation results

Mixed mode verification simulation implements a fast SR, a few lines of pixel SR
cells and a fast “READBACK” SR. The pattern shifted out should match that shifted
in.

 Page 42 of 54

Logic simulation: Full pixel ‘slice’ simulation

The diagram above depicts the slice simulation including 42 pixels, the master row
controller, 19 SRAM registers and data sense amplifiers. This simulation omits any
mask or trim programming to reduce the simulation time (all channels are enabled).

The testbench initialises the logic and waits for the analog to settle/power-up. The
logic is then sequenced as per bunch-train operation, and simulated hits are applied to
different pixels at different times. The logic detects and stores the hit location and
time, which is then read out and displayed in the simulation log after the bunch train
is complete (16 crossings).

LOGIC

SRAMS

VERILOG TESTBENCH

PIX

PIX

PIX

BIAS

SENSE 42 pixels

SIM HITS

 Page 43 of 54

Mask register = 111111000000111111111111111111111111111111 at initialisation
Hit pattern = 00 at initialisation
Mask programming omitted.
Clear & Initialise the SR control registers
SR Clear complete
SR Initialisation complete
Latch current Hit Pattern... 7730
Latch current Hit Pattern... 7880
Latch current Hit Pattern... 8030
Latch current Hit Pattern... 8180
Latch current Hit Pattern... 8330
Latch current Hit Pattern... 8480
Latch current Hit Pattern... 8630
Latch current Hit Pattern... 8780
Latch current Hit Pattern... 8930
Latch current Hit Pattern... 9080
Latch current Hit Pattern... 9230
Latch current Hit Pattern... 9380
Latch current Hit Pattern... 9530
Latch current Hit Pattern... 9680
Latch current Hit Pattern... 9830
End of bunch train.
Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001101
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001101010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001101
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001101000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001000
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000001000101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000101
 >> BANK = 100
 >> PATT = 000010
 >> DATA = 0000000000101100000010
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

@8330

@8780

@9530

Pix 7

Pix 17

Pix 16

Pix 30

Pix 29

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

0x0D

0x0D

0x08

0x05
 Pix 7

Pix 16

Pix 17

Pix 29

Pix 30

TT üüü ü
SS üüü ü
FF üüü ü

 Page 44 of 54

41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Pixel # Address
Code to
Select Bank

100

101

111

110

010

011

001

Internal
node Sel#

6

5

4

3

2

1

0

Address Code
written to
SRAM

011

010

000

001

101

100

110

Data code
hit bit
ordering

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

5
4
3
2
1

LSB

XXX

DataCode[8] DataCode[6]

DataCode[0]

DataCode[5]

 Page 45 of 54

Logic Simulation: Full Pixel Slice Including Maskin g
This is a subsequent revision of the simulation above to include the mask and trim
programming control. Analog hits are generated in pixels 7, 16, 17, 29 and 30 as
shown below. The mask register is set to deactivate pixels 6 à 11 inclusive.

Results Transcript
The corresponding hit data is seen in the excerpt from the simulation log below. The
hit on pixel 7 has correctly been masked. Note also that the hit on pixel 30 appears
twice in the transcript – this is a double hit (see below).

Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001100010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001011010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001011000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000111
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000000111101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 -
 -
 -

Pixel 30 at time 1100

Pixel 30 at time 1011

Pixel 29 at time 1011

Pixels 16&17 at time 1100

D
ou

bl
e

H
it!

!!

 Page 46 of 54

The double hit seen in the simulation deserves further investigation:

Looking at the internal signals for pixel 30 shows that the rising edge of the hit signal
occurs at approximately the same time as the “hold” sampling. The duration of the hit
signal is measured to be 157ns, which means it is sampled as active (high) on two
consecutive occasions. This shows how a double-hit might occur.

Whilst it is interesting that this did occur in simulation, we consider the probability of
this occurring to be low, since it depends on so many variables (some of which are
artificially generated in the simulation). A full analysis would involve much analysis
from many device and circuit simulations and is probably impractical! (Discussion
welcome)

If double-hits are seen during testing, this might indicate that the biasing of the
monostables is too high. In this case the “mso_bias” that controls the timing of the hit
pulse can be adjusted until double-hits cease to appear. Note however that adjusting
the bias too low would make the “HIT” signal pulse much less than 150ns, in which
case hits could be dropped altogether if a similar set of timing circumstances occur.

“HIT” signal
from pixel

“Hold” sampling
every 150ns

Latched Masked
Hit flags
processed by
logic

 Page 47 of 54

End of bunch train.
Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001100010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001100000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001011000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000111
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000000111101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 -
 -
 -
 -
 -
 - SS

Readout phase:
SR Initialisation complete
 >>
 >> HIT INFO: TIME = 0000000001100
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001100010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 010
 >> PATT = 000001
 >> DATA = 0000000001011010000001
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000001011
 >> BANK = 000
 >> PATT = 100000
 >> DATA = 0000000001011000100000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 >>
 >> HIT INFO: TIME = 0000000000111
 >> BANK = 101
 >> PATT = 110000
 >> DATA = 0000000000111101110000
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 -
 -
 -
 -
 -
 -

FF

 Page 48 of 54

Logic Simulation: Row Encoder

The basic structure of the row encoder is illustrated below. The function of this block
is to report at the column base the row address of the cell that is currently being read.
To minimise re-design effort for ASIC2 the full 9 bits are implemented, although only
7 are only required for the ASIC1 test structure. The row addresses are assigned in a
GRAYCODE order.

The active cell drives the column bus with its own unique code. The pull-to-ground
scheme is compatible with the sense amplifiers used to read the SRAM cells.

Simulations

A row-encoder of 84 cells is simulated.

A Verilog stimulus is used to individually excite each of the 84 enable
(RowReadActive) signals and print to screen the address code that is seen at the base
of the column. This text file is imported into excel and processed to check that no
repeated codes are seen in the 84-code set.

Tied to VDD
or GND to
form unique
row address

N bits

RowReadActive

Shared column
address bus.

 Page 49 of 54

Left: Mixed-mode simulation output log excerpt.

Importing this data into excel, converting to
decimal and sorting confirms there are no repeated
codes.

Note that the bus ordering is such that the enables
input bus’ MSB corresponds to the address 0.

Below: Each enable signal is raised in turn to
generate the data output shown on the left.

The condition when more than one enable signal is
raised will cause conflict on the address bus and
draw additional current. This scenario should be
avoided – since the enable inputs are derived from
the readout logic where only one cell is accessed at
any one time this condition should be assured.

Address = 001111010
Address = 001111011
Address = 001111001
Address = 001111000
Address = 001101000
Address = 001101001
Address = 001101011
Address = 001101010
Address = 001101110
Address = 001101111
Address = 001101101
Address = 001101100
Address = 001100100
Address = 001100101
Address = 001100111
Address = 001100110
Address = 001100010
Address = 001100011
Address = 001100001
Address = 001100000
Address = 000100000
Address = 000100001
Address = 000100011
Address = 000100010
Address = 000100110
Address = 000100111
Address = 000100101
Address = 000100100
Address = 000101100
Address = 000101101
Address = 000101111
Address = 000101110
Address = 000101010
Address = 000101011
Address = 000101001
Address = 000101000
Address = 000111000
Address = 000111001
Address = 000111011
Address = 000111010
Address = 000111110
Address = 000111111
Address = 000111101
Address = 000111100
Address = 000110100
Address = 000110101
Address = 000110111
Address = 000110110
Address = 000110010
Address = 000110011
Address = 000110001
Address = 000110000
Address = 000010000
Address = 000010001
Address = 000010011
Address = 000010010
Address = 000010110
Address = 000010111
Address = 000010101
Address = 000010100
Address = 000011100
Address = 000011101
Address = 000011111
Address = 000011110
Address = 000011010
Address = 000011011
Address = 000011001
Address = 000011000
Address = 000001000
Address = 000001001
Address = 000001011
Address = 000001010
Address = 000001110
Address = 000001111
Address = 000001101
Address = 000001100
Address = 000000100
Address = 000000101
Address = 000000111
Address = 000000110
Address = 000000010
Address = 000000011
Address = 000000001
Address = 000000000

Hit 0

Hit 1

Hit 83

Hit 41

 Page 50 of 54

Logic Simulation: Driving Long Column Signals

The master-controller logic is stripped of all functionality and only the input gates are
left. This dummy block is instantiated 84 times with RC line models and driven with
x4 strength buffers to check the clock and control signals can be operated at the
required speeds.

Results Waveforms

Above: Internal to each row, phi1 clock edges differ by <1ns between the top and
bottom cells in the 84-high column. The blue trace shows the true clock signal on the
shared column line that distributes the clock. The internal buffering within each row
ensures the local clock edges are fast and true compliment.

The other control signals (fwd, hold, init etc) are buffered with the same x4 buffer,
and loaded in the same way as the clocks (a single input port on an inverter/logic cell)
at each row. This simulation is taken as verification for the buffering and operating
speed of all these control signals.

 Page 51 of 54

Above: The wired-or used to indicate overflow is seen to respond quickly on the
occurrence of overflow, but is much slower to respond once the overflow has cleared.
This is primarily a debug feature and therefore operation speed is unimportant;
functionality is verified.

Above: The read-enable signal propagates from the bottom to the top of the column
(since the dummy cells are all un-hit). The 17ns delay is the typical time taken for the
read token to pass through all 84 cells this varies by up to 3ns in process corners.
This sets a realistic maximum readout clocking rate of 25Mhz (assuming the token is
collected and reset for a clock cycle after every 84-pixel stretch.) This operating
speed is more than enough for the data rates of this project, especially if columns are
operated in parallel.

17ns

2ns

40ns

14ns

20ns

FF

TT

SS

 Page 52 of 54

Logic Simulation: Three Master-Controllers + Row En coder

The diagram below depicts the system simulation to check integration of several key
circuit blocks in a logic column formation. 17 hits are applied in 3 time divisions.

Results

Above: Inverted row addresses during readout from ‘Bot’, ‘Mid’ & ‘Top’ memories.
Below: Verilog simulation log excerpt with colour-coded annotations to aid reading.

CONTROLLER

SRAMS

CONTROLLER

SRAMS

CONTROLLER

SRAMS

VERILOG TESTBENCH

R
O

W
 E

N
C

O
D

E
R

 (
84

)

83

41

0

ADDR

Mid Hits

Top Hits

Bot Hits
R

ea
dE

n

111111111 110000101 111000000 111111111

Address Bus

Read Enables

RowReadActive(s)

 Page 53 of 54

>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 100
 >> PATT = 011100
 >> DATA = 0110111001111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 001
 >> PATT = 000100
 >> DATA = 1100001001111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 100
 >> PATT = 100000
 >> DATA = 0111000001111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 100
 >> PATT = 100000
 >> DATA = 0111000001111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>
 >> HIT INFO: TIME = 0000000000011
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111100
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 100
 >> PATT = 001110
 >> DATA = 0110011101111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 001
 >> PATT = 001000
 >> DATA = 1100010001111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 100
 >> PATT = 100000
 >> DATA = 0111000001111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Clear & Initialise the SR control registers
SR Reset complete
Top Hit pattern = 000111000110000101000100000011000010000001 at time 173
Mid Hit pattern = 00 at time 173
Bot Hit pattern = 1001 at time 173
>> Latched.
Top Hit pattern = 1001 at time 465
Mid Hit pattern = 001110000000000000000000000000000000001000 at time 465
Bot Hit pattern = 00 at time 465
>> Latched.
Top Hit pattern = 00 at time 657
Mid Hit pattern = 1001 at time 657
Bot Hit pattern = 011100000000000000000000000000000000000100 at time 657
>> Latched.
End of bunch train.
Readout phase:
SR Initialisation complete

>>>
 >> HIT INFO: TIME = 0000000000010
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111101
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 100
 >> PATT = 000111
 >> DATA = 0110001111111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
>> HIT INFO: TIME = 0000000000001
 >> BANK = 101
 >> PATT = 000110
 >> DATA = 0100001101111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 111
 >> PATT = 000101
 >> DATA = 0000001011111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 110
 >> PATT = 000100
 >> DATA = 0010001001111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 010
 >> PATT = 000011
 >> DATA = 1010000111111111111110

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 011
 >> PATT = 000010
 >> DATA = 1000000101111111111110

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>
 >> HIT INFO: TIME = 0000000000001
 >> BANK = 001
 >> PATT = 000001
 >> DATA = 1100000011111111111110
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

-
-
-
-

1

2

3

1

1

3

3

3

3

1

2

2

2

2

1

1

1

1

1

1

100 101 111 110 010 011 001 Bank assignment codes =

Time stamp

 Page 54 of 54

