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LOGIC Simulations 

Dialogue 
 
This is a summary of the logic cells for review at IDR.   
 
This is a long document, intending to cover all aspects of the digital control circuits 
on the ASIC1 test structure, starting with individual logic gates and including mixed-
mode simulations incorporating Verilog stimulus, full row-controller custom logic, 
SRAM memory banks and analog pixels. 
 
Dialog is included after results where appropriate – the contents of this document will 
be discussed in more detail in the IDR. 
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Logic simulation: Logic Cell Drive Strength 
Simulation top-level = “sim_inverter” 
 
Logic inverters were designed with different drive strengths.  Functional logic blocks 
(2 and 3 input NAND and NOR gates) were designed to the minimum drive strength 
only.All transistors used are 1.8v parts to reduce power consumption.   
 
Cell variant x0 x1 x2 x3 x4 

Test load 10fF 30fF 55fF 90fF 125fF 

Rise time 132p 129p 133p 125p 125p 
Fall time 113p 120p 127p 129p 133p 

Pmos width 0.8 2.0 3.5 6.0 8.4 
Nmos width 0.3 0.8 1.4 2.2 2.9 
 
Above: Tabulated results for typical process corner.  Rise and fall time (for these 
tests) are recorded as the transition time between 15% and 85% of the full-scale 1.8v 
signal. 

Results waveforms 

 
 
Above: Inverters of each strength variant are simulated together with their 
corresponding test load.  Transient waveforms are shown on the left (50ps per 
division); DC sweep to determine switching point is shown on the right.
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Above: Inverters and logic gates of each strength variant are simulated together with 
their corresponding test load in all process corners.  Transient waveforms are shown 
on the left (100ps per division); DC sweep to determine switching point is shown on 
the right: spread approx 200mV. 
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Logic simulation: HV Logic Cells 
Simulation top-level = “sim_inverter” 
 
Specifically and only for driving the write transistor of the SRAM cells, inverters for 
high voltages (>1.8v) were created:  The x3_hv and x4_hv strength inverters are 
copies of their low-voltage equivalents, with the nmos transistor enlarged to the same 
dimensions of the pmos.  The equal transistor sizing lowers the switching point such 
that these cells could safely be used with a 1.8v logic input (and guarantees that ‘1’ 
and ‘0’ are both correctly identified, although the noise margin on a ‘1’ will be 
smaller).  Increasing the size of the nmos device means the rise- and fall-times of 
these devices are compromised (unequal). 
 

Cell variant x3_hv x3_hv X4_hv X4_hv 

Test load 90fF 90fF 125fF 125fF 
VDD 2.5 3.3 2.5 3.3 

Rise time 235p 200p 110p 111p 
Fall time 131p 131p 82p 103p 

Pmos width 6.0 6.0 8.4 8.4 
Nmos width 6.0 6.0 8.4 8.4 

 
Above: Tabulated data for typical process corner 
 

 
Above: Standard and high-voltage x3 and x4 inverters are simulated with their 
respective load.  2.5v and 3.3v supplies for the hv parts are simulated to check the 
switching point is a safe margin from the 1.8v supply.  Transient results are shown on 
the left (500ps per major division), DC sweep shown on the right.
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Above: Standard and high-voltage x3 and x4 inverters are simulated with their 
respective loads at 1.8v, 2.5v and 3.3v supplies in three process corners. 
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Logic simulation: Monostables 
 
Two monostables were designed with delays in ratio 1:3.  These can provide the reset 
timing for the pre-sample pixel, and also the correct length hit pulse for the preshape 
pixel.  The graph and table below allow the desired timing to be selected by setting 
the appropriate bias current.  The monostables can be triggered with a short or long 
pulse, the output will be high for the desired time.   
 

 
 
Above: Capacitor corners are checked since these will have the dominant effect on the 
timing.  The timing ratio remains consistent, so the external control would allow the 
circuits to be trimmed to the desired time delays.  These circuits can be evaluated on 
ASIC1 to determine how localalised the control of these needs to be. 
 

Bias current “200ns” monostable 
output 

“600ns” monostable 
output 

210 nA 250 ns 798 ns 
265 nA 200 ns 637 ns 
360 nA 150 ns 476 ns 

 
(These circuit simulations have been updated and re-simulated using NW capacitors.) 
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Above: Example operation in all  
5 process corners.  Key circuit nodes  
are identified on the schematic below. 
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The monostable circuit is designed with the “power-on-reset” input which minimises 
current consumption at power-up.  The power is turned on at time 1us in the 
simulation.  The POR input is held high from time 0 and released after 1.25us. 
 

 
Above: The currents flowing in the monostable circuit during power-up.  The pink 
traces show the circuit operation without the power-on-reset.  The blue show the more 
satisfactory operation where current flow is minimized.  
 
 
 
 
 
 
 

Total current in cell 

Output pulse during 
power-on 

Inverter current 

NOR current 
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Above: Monte Carlo mismatch simulations show the likely spread in the pulse 
duration from the two monostable circuits at one particular setting. 
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Above: Using a single monostable circuit to generate the POR signal for all the other 
monostable circuits (external access is also provided for full control). 
 

 
 
 

POR 

ExtRstMono 
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Logic simulations: SRAM register 
 
The basic SRAM register is illustrated below: 
 

 
 
The cross coupled inverters are made from minimum size transistors, and must be 
overpowered to successfully overwrite their state.  Note the readout mechanism is 
current mode, hence the data column connection is via a pull-down transistor.  This 
ensures the load driven by the inverter cell is kept very small – a large load could also 
destroy the stored state. 

SRAM overdrive strength 
 
It is important to understand the strength required to overpower a SRAM cell – if too 
many cells were written from the same data (ie the timestamp signal) they might 
become corrupted. 
 

Driving cell  
(SRAM Write signal) 

Process 
corner 

x3_hv (2.5v) x3 (1.8v) 

SS 9 0 
SF 8 0 
TT 10 11 
FS 10 10 
FF 11 12 

 
Above: Number of active SRAM cells that can be overpowered (successfully written).   
 
This data indicates the need to overdrive the write transistor for reliable SRAM 
operation in all process corners.  A high-voltage tolerant transistor must be used for 
the write transistor (these have a larger minimum size and therefore will make the 
SRAM layout larger than previously estimated). 
 
This information is also important to ensure timecode buffers are not expected to 
drive too many rows, maximum 8.  Monte-Carlo simulations have shown that a driver 
cell of weaker strength (ie x2) is insufficient and results in corrupted data. 
 

WR RD 

Din 

  Dout 
Column 
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Example operation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Above: Internal 2.5v write signal successfully overwrites the SRAM (the internal BIT 
and BITb nodes) with the input state. 
 

Input 
Data ‘0’ 

Input 
Data ‘1’ 

Write pulse 
2.5v 
20ns 

Write pulse 
2.5v 
20ns 
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Right: Monte carlo simulation 
(N=250) shows 4 failed write 
attempts.  The write transistor is 
the critical component for this 
circuit action and has probably 
been down-sized in the extreme 
corners of the monte-carlo 
variations. 
 
 
 
 
 
 
 
 
 
 
 
 
The write transistor can be driven with up to 3.3v in the event that SRAM writing 
fails.  The write transistor can be enlarged slightly in the layout, which will also help 
to guard against this rare write failure.  Updating just the write voltage to 3.3v the 
monte-carlo simulation is run again: 
 
 
Right: Monte carlo 
simulation (N=250) 
shows 100% success with 
the write transistor driven 
at 3.3v.   
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Logic Simulation: Data Sense 
 
The circuit is operated in reduced current mode as detailed in the table below: 
 

Data Column Static current bias 10uA  
 Mirrored 4:1 onto line as 2.5uA  
SRAM cell Current sink for ‘zero’ 5uA 
 Current sink for ‘one’ 0 
Data Sense 3.3v bias ref (pad) 130uA 
 3.3v bias ref (local) 13uA 
Inverter (comp) Switching current limited to 5uA 
  

Total in sense amplifier 
 
15.4uA 

 
 
The circuit is simulated with models for full line resistance and capacitance.  The full 
reticle size has been verified, although this will not be implemented until ASIC2.  
Results for ASIC1 are also checked, although this performance will be faster due to 
the smaller distances involved. 
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Results Waveforms 

 
 
 
 
 
 
Above: Key circuit nodes are shown to demonstrate typical circuit operation.  There is 
little difference between the read times for near and far cells. 
 

Read 

Sense current 

Comparator current 

Sense output, input 
to comparator 

Column current 

Data output 

-2.5uA 

+2.7uA 

Nearest 
Cell 

Furthest 
Cell 
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Above: Process corners simulated to show the variation in data sense times.   
Allowing 200ns for each read permits readout at 5Mhz. 
 

130ns ± 20ns 

Read 

Sense current 

Comparator current 

Column current 

Data output 
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Logic Simulation: Data output multiplex 
 
The diagram below shows how the data sense amplifiers are multiplexed to a single 
31bit parallel output 
 

 
 

 
 
 
 
Above: Internal select lines as decoded from 2-bit Gray code ADDR input. 
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The circuit is primed with test data values at the multiplexer inputs.  The multiplex 
address are cycled through the four states.  Only the four LSBs are plotted for clarity.  
This simulation must demonstrate the x3 inverters can drive the common output line 
including RC loading. 
 

 

 
 
Above: Annotated digital data output from the multiplexer.  Sel à  Data delay is 
approx 25ns with the estimated line loadings (acceptable for 10Mhz performance). 
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Logic Simulation: SRAM shift register cell 
 
The SRAM shift register cell and waveform timings are illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D A 

B C 

1 

2b 

2 2 

Dout 

RstB 



 Page 21 of 54 

 

 
 
 

• During phi1 the SRAM cell holds its own state with two cross-coupled 
inverters. 

 
• As phi2 switches on, node A is updated with the new input state (connected 

from previous SR cell through a phi2 switch).  Node B updates accordingly.  
At the same time switch phi2b switches off, thus allowing the cell to drive its 
current state at the output without corruption from the new input. 

o RACE CONDITION 
o Node B is updated with the new value at node A.  Node A must not be 

allowed to propagate through the inverter and phi2b switch to the node 
C (where it would corrupt the cell’s previous data). 

o The undesirable signal path includes an extra inverter with respect to 
the desirable signal sequence, therefore the race condition will result in 
the desired outcome. 

 
• During phi2 the SRAM cell drives its stored state to the next cell (connected to 

node D through a phi2 switch).  The stored state is held on node C, comprising 
parasitic and gate capacitances of the inverter. 

 
• As phi2 switches off the cell becomes isolated from its neighbour, and switch 

phi2b closes to update node C with the new state.  
o RACE CONDITION 
o Node C is updated with the new value at node B.  Node C must not be 

allowed to propagate through the inverter and phi2 switch to the output 
node and into the next cell (where it would corrupt data at node A). 

o The undesirable signal path includes an extra inverter and phi2 switch 
with respect to the desirable signal sequence, therefore the race 
condition will result in the desired outcome. 

o An intermediate value may be sampled on the parasitic capacitance 
between two SR cells – this would not affect the correct operation of 
the SR cell. 

 
• As phi1 switches on the cell completes the internal feedback loop and the new 

state is stored indefinitely (whilst powered). 
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Above: Corner simulations showing the internal nodes in the SR cell.  The race 
conditions at both edges of phi2 behave correctly. 

 
Above: Mismatch Monte Carlo (100 runs) to check performance is robust in race 
conditions. 

A 

B 

C 

D 

C 

A 

Errors due to 
race hazards 
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Above: SRAM reset is shown in detail.  Bit 12 of the shift register is currently active; 
the reset sets this to zero along with all other bits in the shift register; This sets the 
local OR evaluation to true (signal SHIFT_IN_CHK; also generates the “Done” signal 
for readout control) which sets the input to the first register (bit 19) high.  Thus the 
shift register is reset to its initial 
state, 10000000000000000000. 
 
Right: Process corner variations 
from above.

Reset 

Phi2 

SR state 

Feedback 
OR node 
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Logic simulation: Bi-Directional SRAM cells 
 
The standard SRAM shift register cell is adapted to make it bi-directional as 
illustrated below. 
 

 
 
The last cell must be modified such that it will hold the token rather than lose it if 
clocked again (robust operation in overflow conditions) and also ensure that a ‘0’ is 
driven as the cell input when in backwards mode. 
 

 
 
 
The “bi-directional” and “endstop” shift register cells are arranged to form a 20-
element shift register.  A logical NOR generates the SR input in the fwd mode such 
that either after reset or one forward clock cycle when empty, the register is reset to 
the default condition 10000000000000000000. 
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Results Waveforms 
 

 
 
 
 
 
Above: Typical operation involving 5 consecutive hits (ie all in the same 42-pixel 
section).  These simulations are run at ~50Mhz to check operation is possible at the 
target 150ns bunch-crossing rate.   
 

 
Above: The overflow condition is verified – the register is clocked for 25 hits.  The 
circuit can be seen to hold the token at position 0 and then assert each enable line for 
all the registers back to 19. 
 
 
 
 
 

20ns 

hits readout 
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Above: Example operation at 50Mhz in all 5 process corners with R-C line models 
included.  8ns pulses separated by 2ns are intact after a full 84 * 50 micron length.  
SRAM operates correctly.
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Logic simulation: Bi-Directional SRAM shift registe r 
Simulation top-level = “sim_sram_shift20” 
 
The bidirectional shift register generates the read and write pointers for the SRAM 
memory bank.   
 
In normal operation the register is clocked once each register that must be written.  
During readout mode the register is clocked once in backward direction to initialise, 
then combinational logic enables each row to access each of its valid registers 
sequentially until the column read is complete. 
 
If >19 forward (“write”) clocks are received the register outputs a “full” wired-or 
signal, and will correctly read back the first 19 registers that were written.  

 
Above: Typical operation, showing 5 clocks in the forward direction, then 25 clocks 
in the reverse direction, of which the first 5 act upon the shift register and replay those 
registers that were written-to.  The shift register thereafter ignores any further phi2 
clocks and sets the “Done” signal (combinational NOR of all 20 bits).



 Page 28 of 54 

 
Above: Overflow condition: 25 hits are simulated, note that reg 0 remains active 
beyond the 20th hit – this is used to generate the overflow signal, and ensures that 
when clocked backwards the shift register has not lost its token so that readout of the 
other 19 registers is achieved (as illustrated). 
 

 
Above: Correct operation verified in process corners SS,TT,FF. 
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Logic simulation: Latch-Hold circuits 
The structure below uses a ping-pong architecture to sample the hit signals on both 
rising and falling edges of the Hold signal.  This means the sampling “Hold” signal 
can run at the ~6Mhz. 

 
 
The “hit” states are stored on the gate capacitance of the second inverters. This 
capacitance is small, but the state must be held for only 150ns. 
 

Results Waveforms 
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Above: Typical operation is demonstrated in all 5 process corners.  A small injection 
of charge is seen on the floating storage node due to the adjoined switch. 

 
Above: Simulation in all process corners is shown indicate the likely lifetime of this 
small storage node.  Taking 250us as a safe interval, the hold signal must be clocked 
at a minimum of 4kHz to avoid charge loss effects.    
 



 Page 31 of 54 

 
Above: The hold signal is clocked at 300ns (ie 150ns sampling rate).  A parasitic 
extraction of a preliminary layout is simulated.  The charge injection effect seems to 
be reduced when parasitic capacitances are included. 
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Logic simulation: 3-clock SR cell 
The SR cell can be driven with 3 clocks to completely eliminate the race condition.  
This us most useful for mask programming where long clock lines will be driven 
slowly – in these circumstances the true compliment needed for sucessfull operation 
of the 2-clock SR cell would require local clock buffers in every pixel – which would 
draw excessive current. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Results Waveforms 
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Above: Slow operation (100kHz) is verified in all process corners to ensure charge 
leakage from transistor gates does not degrade performance at such low speeds.  
Clock edges are loaded to achieve 50ns rise/fall times for realistic simulation. 
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Logic simulation: Mask & Config programming (shift5 ) 
 
Each pixel contains a 5-bit SRAM shift register, arranged such that each column 
forms a long shift register.  Global clocks are distributed along each row.  Pixels 
buffer and generate the compliment clocks internally to ensure clean clock waveforms 
for the SRAM shift register cells. 
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Pixel operation 
 

 
 
Above: Example waveforms showing shift register functionality using the 3 phase 
clocking scheme.   
 
Reset occurs during phi2.  Input data is latched on the falling edge of phi2.  In the 
example above a single ‘one’ is shifted through the SR.  In the real system, data is 
shifted in as TRIM-LSB first with the MASK as the final bit.  The full string of 5-bit 
codes in this order are shifted through the column. 
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Configuration “SLOW” clocks 
 
Clock buffering is summarised below.  Clock loads are made equal.   
 
 Pixels 

driven 
Rows that 
share 

SRAMs per 
pixel 

Gates per 
SRAM 
using clk 

Total load 
(# gates) 

Phi1 42 4 5 2 1680 
Phi2 42 2 5 4 1680 
Phi2 42 2 5 4 1680 
Phi3 42 4 5 2 1680 
 

  

 
Each 4-row section is repeated throughout the pixel array.  Global clocks run 
vertically to feed the large (x4) row buffers. 
 

 

Phi2 

Phi2 

Phi3 

Phi1
 

..42 cells.. 

..42 cells.. 

..42 cells.. 

..42 cells.. 
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Results waveforms 

 

 
Above: Config clocks along one line of 42 pixels.  Rise times of ~25ns are consistent 
between process corners.  Switching current (per buffer) is ~300uA.  
 
Estimated maximum switching current during programming of ASIC1 is 50mA, 
although for slow clock rates this will average and smooth to a small fraction of this 
peak figure. 
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Logic Simulation: Fast Config Shift Register 
 
The input and readback fast shift registers are formed from the 2-phase SRAM shift 
register cells.  Each cell has its own local clock buffering which permits high speed 
operation, but at higher power.   
 
The input and readback shift registers are directly connected as illustrated below and 
simulated at 100Mhz. 
 

 
 

 

 Results Waveforms 
 
 
(see next page). 
 
100Mhz clock signals are seen to be intact and non-overlapping at both ends of the 
row. 
 
Current peak ~3mA for clock edges. 
 
Note that a single cycle delay is seen in the readback shift register data due to the 
parallel load architecture. 
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LOAD_PARALLEL 

DIN 
SHIFT_OUT 
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Overview: Configuration programming and Verificatio n 
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Simulation results 
 
Mixed mode verification simulation implements a fast SR, a few lines of pixel SR 
cells and a fast “READBACK” SR.  The pattern shifted out should match that shifted 
in.
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Logic simulation: Full pixel ‘slice’ simulation 
 

 
 
 
The diagram above depicts the slice simulation including 42 pixels, the master row 
controller, 19 SRAM registers and data sense amplifiers.  This simulation omits any 
mask or trim programming to reduce the simulation time (all channels are enabled). 
 
The testbench initialises the logic and waits for the analog to settle/power-up.  The 
logic is then sequenced as per bunch-train operation, and simulated hits are applied to 
different pixels at different times.  The logic detects and stores the hit location and 
time, which is then read out and displayed in the simulation log after the bunch train 
is complete (16 crossings). 
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SIM HITS 
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Mask register = 111111000000111111111111111111111111111111 at initialisation 
Hit pattern   = 000000000000000000000000000000000000000000 at initialisation 
Mask programming omitted. 
Clear & Initialise the SR control registers 
SR Clear complete 
SR Initialisation complete 
Latch current Hit Pattern...                 7730 
Latch current Hit Pattern...                 7880 
Latch current Hit Pattern...                 8030 
Latch current Hit Pattern...                 8180 
Latch current Hit Pattern...                 8330 
Latch current Hit Pattern...                 8480 
Latch current Hit Pattern...                 8630 
Latch current Hit Pattern...                 8780 
Latch current Hit Pattern...                 8930 
Latch current Hit Pattern...                 9080 
Latch current Hit Pattern...                 9230 
Latch current Hit Pattern...                 9380 
Latch current Hit Pattern...                 9530 
Latch current Hit Pattern...                 9680 
Latch current Hit Pattern...                 9830 
End of bunch train. 
Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001101 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001101010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001101 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001101000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001000 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000001000101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000101 
     >>           BANK = 100 
     >>           PATT = 000010 
     >>           DATA = 0000000000101100000010 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
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Logic Simulation: Full Pixel Slice Including Maskin g 
This is a subsequent revision of the simulation above to include the mask and trim 
programming control.  Analog hits are generated in pixels 7, 16, 17, 29 and 30 as 
shown below.  The mask register is set to deactivate pixels 6 à  11 inclusive. 

 
 

Results Transcript 
The corresponding hit data is seen in the excerpt from the simulation log below.  The 
hit on pixel 7 has correctly been masked.  Note also that the hit on pixel 30 appears 
twice in the transcript – this is a double hit (see below). 
 
 
 

Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001100010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001011010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001011000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000111 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000000111101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 - 
 - 
 - 

Pixel 30 at time 1100 

Pixel 30 at time 1011 

Pixel 29 at time 1011 

Pixels 16&17 at time 1100 

D
ou

bl
e 

H
it!

!!
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The double hit seen in the simulation deserves further investigation: 
 

 
 
Looking at the internal signals for pixel 30 shows that the rising edge of the hit signal 
occurs at approximately the same time as the “hold” sampling.  The duration of the hit 
signal is measured to be 157ns, which means it is sampled as active (high) on two 
consecutive occasions.  This shows how a double-hit might occur. 
 
 
 
Whilst it is interesting that this did occur in simulation, we consider the probability of 
this occurring to be low, since it depends on so many variables (some of which are 
artificially generated in the simulation).  A full analysis would involve much analysis 
from many device and circuit simulations and is probably impractical!  (Discussion 
welcome) 
 
If double-hits are seen during testing, this might indicate that the biasing of the 
monostables is too high.  In this case the “mso_bias” that controls the timing of the hit 
pulse can be adjusted until double-hits cease to appear.  Note however that adjusting 
the bias too low would make the “HIT” signal pulse much less than 150ns, in which 
case hits could be dropped altogether if a similar set of timing circumstances occur. 

“HIT” signal 
from pixel 

“Hold” sampling 
every 150ns 

Latched Masked 
Hit flags 
processed by 
logic 
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End of bunch train. 
Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001100010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001100000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001011000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000111 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000000111101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 - 
 - 
 - 
 - 
 - 
 - SS 

Readout phase: 
SR Initialisation complete 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001100 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001100010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 010 
     >>           PATT = 000001 
     >>           DATA = 0000000001011010000001 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000001011 
     >>           BANK = 000 
     >>           PATT = 100000 
     >>           DATA = 0000000001011000100000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000111 
     >>           BANK = 101 
     >>           PATT = 110000 
     >>           DATA = 0000000000111101110000 
     <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
 - 
 - 
 - 
 - 
 - 
 - 

FF 
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Logic Simulation: Row Encoder 
 
The basic structure of the row encoder is illustrated below.  The function of this block 
is to report at the column base the row address of the cell that is currently being read.  
To minimise re-design effort for ASIC2 the full 9 bits are implemented, although only 
7 are only required for the ASIC1 test structure. The row addresses are assigned in a 
GRAYCODE order. 
 

 
 
The active cell drives the column bus with its own unique code.  The pull-to-ground 
scheme is compatible with the sense amplifiers used to read the SRAM cells. 
 

 

 

 

Simulations 
 
A row-encoder of 84 cells is simulated.   
 
 
A Verilog stimulus is used to individually excite each of the 84 enable 
(RowReadActive) signals and print to screen the address code that is seen at the base 
of the column.  This text file is imported into excel and processed to check that no  
repeated codes are seen in the 84-code set.   
 
 
 
 
 

Tied to VDD 
or GND to 
form unique 
row address 

N bits 

RowReadActive 

Shared column 
address bus. 
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Left: Mixed-mode simulation output log excerpt.     
 
Importing this data into excel, converting to 
decimal and sorting confirms there are no repeated 
codes.  
 
Note that the bus ordering is such that the enables 
input bus’ MSB corresponds to the address 0. 
 
 
 
 
 
Below: Each enable signal is raised in turn to 
generate the data output shown on the left. 

 
 
 
 
The condition when more than one enable signal is 
raised will cause conflict on the address bus and 
draw additional current.  This scenario should be 
avoided – since the enable inputs are derived from 
the readout logic where only one cell is accessed at 
any one time this condition should be assured. 
 
 

Address = 001111010 
Address = 001111011 
Address = 001111001 
Address = 001111000 
Address = 001101000 
Address = 001101001 
Address = 001101011 
Address = 001101010 
Address = 001101110 
Address = 001101111 
Address = 001101101 
Address = 001101100 
Address = 001100100 
Address = 001100101 
Address = 001100111 
Address = 001100110 
Address = 001100010 
Address = 001100011 
Address = 001100001 
Address = 001100000 
Address = 000100000 
Address = 000100001 
Address = 000100011 
Address = 000100010 
Address = 000100110 
Address = 000100111 
Address = 000100101 
Address = 000100100 
Address = 000101100 
Address = 000101101 
Address = 000101111 
Address = 000101110 
Address = 000101010 
Address = 000101011 
Address = 000101001 
Address = 000101000 
Address = 000111000 
Address = 000111001 
Address = 000111011 
Address = 000111010 
Address = 000111110 
Address = 000111111 
Address = 000111101 
Address = 000111100 
Address = 000110100 
Address = 000110101 
Address = 000110111 
Address = 000110110 
Address = 000110010 
Address = 000110011 
Address = 000110001 
Address = 000110000 
Address = 000010000 
Address = 000010001 
Address = 000010011 
Address = 000010010 
Address = 000010110 
Address = 000010111 
Address = 000010101 
Address = 000010100 
Address = 000011100 
Address = 000011101 
Address = 000011111 
Address = 000011110 
Address = 000011010 
Address = 000011011 
Address = 000011001 
Address = 000011000 
Address = 000001000 
Address = 000001001 
Address = 000001011 
Address = 000001010 
Address = 000001110 
Address = 000001111 
Address = 000001101 
Address = 000001100 
Address = 000000100 
Address = 000000101 
Address = 000000111 
Address = 000000110 
Address = 000000010 
Address = 000000011 
Address = 000000001 
Address = 000000000 

Hit 0 

Hit 1 

Hit 83 

Hit 41 
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Logic Simulation: Driving Long Column Signals 
 
The master-controller logic is stripped of all functionality and only the input gates are 
left.  This dummy block is instantiated 84 times with RC line models and driven with 
x4 strength buffers to check the clock and control signals can be operated at the 
required speeds.   
 

Results Waveforms 
 

 
 
Above: Internal to each row, phi1 clock edges differ by <1ns between the top and 
bottom cells in the 84-high column.   The blue trace shows the true clock signal on the 
shared column line that distributes the clock.  The internal buffering within each row 
ensures the local clock edges are fast and true compliment.  
 
The other control signals (fwd, hold, init etc) are buffered with the same x4 buffer, 
and loaded in the same way as the clocks (a single input port on an inverter/logic cell) 
at each row.  This simulation is taken as verification for the buffering and operating 
speed of all these control signals. 
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Above: The wired-or used to indicate overflow is seen to respond quickly on the 
occurrence of overflow, but is much slower to respond once the overflow has cleared.  
This is primarily a debug feature and therefore operation speed is unimportant; 
functionality is verified. 
 

 
Above: The read-enable signal propagates from the bottom to the top of the column 
(since the dummy cells are all un-hit).  The 17ns delay is the typical time taken for the 
read token to pass through all 84 cells this varies by up to 3ns in process corners.  
This sets a realistic maximum readout clocking rate of 25Mhz (assuming the token is 
collected and reset for a clock cycle after every 84-pixel stretch.)    This operating 
speed is more than enough for the data rates of this project, especially if columns are 
operated in parallel. 

17ns 

2ns 

40ns 

14ns 

20ns 

FF 

TT 

SS 
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Logic Simulation: Three Master-Controllers + Row En coder 
 
The diagram below depicts the system simulation to check integration of several key 
circuit blocks in a logic column formation.  17 hits are applied in 3 time divisions. 
 

 

Results  
 
 
 

 
Above: Inverted row addresses during readout from ‘Bot’, ‘Mid’ & ‘Top’ memories. 
Below: Verilog simulation log excerpt with colour-coded annotations to aid reading. 
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>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 100 
     >>           PATT = 011100 
     >>           DATA = 0110111001111111111100    
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 001 
     >>           PATT = 000100 
     >>           DATA = 1100001001111111111100  
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 100 
     >>           PATT = 100000 
     >>           DATA = 0111000001111111111110  
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 001 
     >>           PATT = 000001      
     >>           DATA = 1100000011111111111110  
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 100 
     >>           PATT = 100000 
     >>           DATA = 0111000001111111111100   
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000011 
     >>           BANK = 001 
     >>           PATT = 000001 
     >>           DATA = 1100000011111111111100 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 100 
     >>           PATT = 001110 
     >>           DATA = 0110011101111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 001 
     >>           PATT = 001000 
     >>           DATA = 1100010001111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 100 
     >>           PATT = 100000 
     >>           DATA = 0111000001111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

 

Clear & Initialise the SR control registers 
SR Reset complete 
Top Hit pattern   = 000111000110000101000100000011000010000001 at time                  173 
Mid Hit pattern   = 000000000000000000000000000000000000000000 at time                  173 
Bot Hit pattern   = 100000000000000000000000000000000000000001 at time                  173 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Latched. 
Top Hit pattern   = 100000000000000000000000000000000000000001 at time                  465 
Mid Hit pattern   = 001110000000000000000000000000000000001000 at time                  465 
Bot Hit pattern   = 000000000000000000000000000000000000000000 at time                  465 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Latched. 
Top Hit pattern   = 000000000000000000000000000000000000000000 at time                  657 
Mid Hit pattern   = 100000000000000000000000000000000000000001 at time                  657 
Bot Hit pattern   = 011100000000000000000000000000000000000100 at time                  657 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Latched. 
End of bunch train. 
Readout phase: 
SR Initialisation complete 
     

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000010 
     >>           BANK = 001 
     >>           PATT = 000001 
     >>           DATA = 1100000011111111111101 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 100 
     >>           PATT = 000111 
     >>           DATA = 0110001111111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>     
>> HIT INFO: TIME = 0000000000001 
     >>           BANK = 101 
     >>           PATT = 000110 
     >>           DATA = 0100001101111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 111 
     >>           PATT = 000101 
     >>           DATA = 0000001011111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 110 
     >>           PATT = 000100 
     >>           DATA = 0010001001111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 010 
     >>           PATT = 000011 
     >>           DATA = 1010000111111111111110 
     
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 011 
     >>           PATT = 000010 
     >>           DATA = 1000000101111111111110 
     
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     >> HIT INFO: TIME = 0000000000001 
     >>           BANK = 001 
     >>           PATT = 000001 
     >>           DATA = 1100000011111111111110 
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

- 
- 
- 
- 
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