CALICE and LC-ABD Stewart Boogert (UCL) for CALICE UK

- CALICE overview
 - Physics case
 - ECAL and HCAL design
 - UK activities
 - test beam electronics
 - Simulation (Geant 3&4 and Fluka)
- Synergy
 - Backgrounds
 - Simulation
 - BDSIM, Mokka, Fluka
 - Luminosity spectrum

- UK collaboration
 - Birmingham
 - Cambridge
 - Imperial
 - Manchester
 - UCL
 - RAL
- International collaboration
 - 9 countries (3 regions -US, Asia, Europe)
 - 26 institutes
 - ~150 physicists

Physics case (Higgs self-coupling)

- Higgs self-coupling
 - hhZ events
 - 6 jet topology
- Construct D for 6 jet events

$$D = \sqrt{(m_{12} - m_h)^2 + (m_{34} - m_h)^2 + (m_{56} - m_z)^2}$$

Physics case (no Higgs)

- No Higgs
 - Standard model unitarity violated without Higgs
 - WW scattering most interesting channel

Separation of

$$v v W W \rightarrow 4 jets$$

$$\nu \nu Z^0 Z^0 \rightarrow 4 jets$$

CALICE introduction

 $\frac{\delta E}{1} \approx \frac{0.30}{\sqrt{10}}$

- Calorimeter requirements
 - Calorimeter inside coil to reduce energy loss
 - Thin to reduce cost
 - High B field 3-4T
 - Good solid angle coverage
- Performance

- ECAL
$$\frac{\delta E}{E} \approx \frac{0.10}{\sqrt{E}} \oplus 0.01$$

- HCAL
$$\frac{\delta E}{E} \approx \frac{0.50}{\sqrt{E}} \oplus 0.04$$

Energy flow measurement

• Energy flow

- Typical jet energies 50 200 GeV
 - 62% Charged particles (tracker)
 - 27% Photons (ECAL)
 - 10% Neutral hadrons (HCAL)
- Combined approach
 - Remove charged deposits by tracking into calorimeter
 - Combine independent calorimeter clusters with tracks
- Very fine granularity calorimeter
 - "Tracking calorimeter"

TESLA-CALICE geometry

ECAL Design

- SiW "tracking" sampling calorimeter
 - 40 layers of Silicon and Tungsten
 - $R_{moliere} = 9mm$, $X_0 \sim 3.5mm$ and λ_{int} / X_0 large so good em-hadronic separation
 - Silicon pad readout, pad size ~1cm to match R_{moli}
- Mechanics
 - W layers in carbon fiber/epoxy structure

ECAL Design (2)

- ECAL test beam detector layer
 - Si wafers
 bonded with
 conductive glue
 directly to PCB

- Si wafers
 - Thickness 0.525mm
 - Capacitance per pad 25 pF
 - Full depletion bias 150V
 - 42,000 e/mip

Analogue HCAL Design

- Sampling Fe-Scint calorimeter
 - Barrel 38 layers of Fe/scint
 - 32 modules of ~1.1x1.1x2.7m
 - End cap 53 layers
 - 8 modules 3.1x2.5x1.4

Analogue-HCAL Design (2)

- Sampling calorimeter
 - Tiles coupled to wavelength shifting (WLS) fibers
 - Optimising
 - WLS fiber groove
 - Fiber end reflector
 - Readout

- Readout options
 - -- APDs
 - Si-PMs
 - Cheap
 - Saturation problems

Digital-HCAL Design

- "Digital calorimetry"
 - High segmentation cells 1cm³
 - 50x10⁶ channels
 - Analogue readout very difficult
 - Landau fluctuations in small cells
- Digital readout
 - Deposited energy proportional to number of fired cells in cluster
- Possible to use scint tiles as in AHCAL design
 - Many other digital detector/readout options

- Gas electron multiplier (GEMS)
 - Q~5fC
 - I~5fC/20ns = 0.25 A
 - V~5mV
- Test chamber assembled

Digital-HCAL Design (2)

- Short drift tubes
 - Hexagonal cells 1cm²x3mm
 - Gas mix IB:Ar:TFE
 - Testing : efficiency, multiplicity as function of HV

- Resistive plate chambers (RPCs)
 - Most promising DHCAL option
 - Testing: efficiency, crosstalk
 - Design optimisation

Test beam aims

- Test beam motivation
 - Validate electronic and mechanical design
 - Tune simulation, particularly important for hadronic showers
- Configurations
 - Particle beams (e, π and hadron) with energies (1-100GeV)
 - Want ~100 configurations with high statistics 10⁶ events
 - Total event sample ~10⁸ events
 - ~40kBytes/event, terabytes of data.
- Readout, ECAL + (A/D)HCAL, plus
 - Beam monitoring
 - "Tail catchers" for shower containment

CALICE test beam

• ECAL

- 30 layers of tungsten
- $-10x0.4X_{0} + 10x0.8X_{0} + 10x1.2X_{0}$
- HCAL
 - 38 layers of Fe
 - 5000 5x5cm² scintillator tiles with analogue readout
 - Or 350k 1x1cm² RPC, GEM or scintillator tiles with digital readout

Test beam electronics

- Front end (FE) FGA controls signals to ADC, DAC LVDS
- Back end (BE)
 - FPGA gathers data from FE and provides interface to VME backplane
 - Trigger logic in BE (active only in one readout board) and trigger information distributed via backplane
- Schedule
 - VFE chips produced by December 2003
 - Readout boards ready February 2004

Test beam schedule

- Schedule still rather flexible, dependent on
 - Development of prototypes (D/AHCAL)
 - Available beam lines
- Approximate schedule
 - Spring 2004 Cosmic tests on ECAL prototype
 - Summer 2004 ECAL tests at DESY electron test beam
 - Summer 2004 AHCAL tests at DESY electron beam
 - Autumn 2004 ECAL+AHCAL
 - Winter 2004 ECAL+RPC DHCAL
 - Summer 2005 ECAL +(RPC/GEM/Scintillator)HCAL

CALICE simulation

- Current simulation tools
 - Brahms (Geant 3) TESLA TDR
 - Full detector
 - Difficult to modify
 - Mokka (Geant 4)
 - Mainly calorimeter
 - Other components simply implemented
 - Geometry database (MySQL)
- Additionally
 - Mokka Geometry in Geant 3
 - Mokka Geometry in Fluka
 - Hit data stored in generic LCIO files

Stewart Boogert (UCL)

Geant-3 and Fluka comparisons

- Comparisons between
 - Geant 4
 - Geant 3
 - Fluka (deprecated version, within Geant 3)
 - All using the same Geant 4 defined geometry, SiW ECAL and Scint AHCAL
- Bug fixed in G3
 - Good agreement between G3 and G4
 - Fluka differences significant

CALICE background

- Beam-beam interaction
 - Beamstrahlung
 - Pairs (e^+e^-)
 - Hadrons (from interactions)
- Neutrons
 - Radiative Bhabhas
 - Pairs
- BDS
 - Muons
 - Sync. Radiation
 - Beam gas

- TESLA @ 500GeV TDR results
 - Leakage from mask ~1GeV/BX
 - Pairs ~5GeV/BX (1GeV Barrel + 4GeV End caps)
 - Hadrons from ~2GeV/BX
 - Neutrons ~6GeV (ECAL)
 ~8GeV(HCAL)
 - Muons 0.3/BX (whole detector)
 - Sync. radiation and beam gas negligible

Background simulation

- Current detector background simulation
 - Based on Geant 3 (Brahms)
 - Geometry updating difficult
 - No accelerator tracking
 - Updates from TDR?
 - L^{*}=5m
 - Crossing angle (TESLA)

Mokka + BDSIM?

- BDSIM
 - Accelerator tracking code based on Geant 4 (Grahame Blair)
 - Many physics processes implemented via Geant for wide range of energies
 - Track particles to interaction region and simulate detector response
 - Geant 4 basis
 - LCFI, CALICE, MDI all benefit
 - Neutron transport from Fluka

Luminosity spectrum

- Beam-beam interaction
 - Significantly reduces the center of mass energy, due to beamstrahlung losses
 - No beam line constraint
 - Measure luminosity spectrum
 - Most significant systematic error on threshold mass measurements

Bhabha acolinearity

- $e^+e^- \rightarrow e^+e$
 - High rate $\sigma_{_{Bhabha}} >> \sigma$
 - Clean events
- x reconstruction
 - Can not use calorimeter energy, due to energy resolution
 - Use scattered particle angular variables only
- Frary-Miller (angle approx.)

$$x = \frac{\sqrt{s'}}{\sqrt{s}} = 1 - \frac{\theta_A}{\sin\left(\overline{\theta}\right)}$$

Moenig (1 photon approx)

$$x = \sqrt{\cot\left(\frac{\theta_1}{2}\right)\cot\left(\frac{\theta_2}{2}\right)}$$

Spectrum reconstruction

- Reconstruction performance
 - "Good" agreement seen over important x range
 - Both methods identical in peak region
 - Differences at x<0.2 insignificant

- Transformed x
 - Detail in peak x>1.10⁻⁴
 - Resolve peak structure with following transformation:

$$x' = 1 - (1 - x)^{1/5}$$

Effect of CALICE on spectrum

- Calorimeter resolution $\sigma_{e} = 68 \, mrad / \sqrt{E} + 8 \, mrad$
- Tracking resolution
 - Ultimate precision depends on low angle track angular resolution (3.10⁻⁵rad)
 - Problem with tracking efficiency
 - CALICE electron efficiency ≈100%
- Energy flow measurement essential with full detector simulation
 - vertex position resolution, jitter?

Effect on top threshold

- True next next to leading order (NNLO) top threshold calculated via TOPPIK
- Smear "true" threshold with x (true/reconstructed) distribution

$$\sigma'(\sqrt{s}) = \sum x_i \sigma(x \sqrt{s})$$

"true" threshold1s mass = 350 GeV

Stewart Boogert (UCL)

Summary

- Test beam
 - SiW ECAL prototype well underway
 - HCAL development in many areas and proceeding well
- Simulation
 - Progress being made with Geant 4 comparisons with Geant 3 and Fluka
 - Comparisons to test beam data
 - Hope to have energy flow algorithms for "realistic" physics studies
- Synergy
 - Excellent opportunity to integrate UK simulation activity within Geant 4 framework (background studies)
 - Relation to LC-ABD PPARC bid
 - Luminosity spectrum
 - Inclusion of detector effects (CALICE, but also tracking)