Fluka, comparison of hadronic models

Using Fluka for CALICE
Motivation
Updates since Paris
Summary
Nigel Watson (CCRLC-RAL)

Motivation

- Detector design choices require reliable hadronic interaction modelling
- Fluka offers very serious alternative physics models to those in GEANT
- Well designed test beam study should discriminate between models
- Systematic comparison of GEANT and FLUKA physics
 - Identify key areas for CALICE test beam(s)
 - Availability of FLUKA via G4 coming, but CALICE test beam earlier!
- Wish to...
 - Test new Mokka detector models
 - Avoid coding each geometry directly in FLUKA
 - \Rightarrow difficult, error prone, may introduce non-physics differences
 - Also investigate full TDR type geometry
- Issues
 - Fluka geometry defined by data cards
 - Only limited geometrical structures supported
 - Repeated structures at 1 level only
- Closely related to G3/G4 studies (G.Mavromanolakis, D.Ward)

Models compared

model tag		brief description [NB:15/16 models from G.Mavromanolakis!
G3-GHEISHA	:	GHEISHA
G3-FLUKA+GH	:	FLUKA, for neutrons with E < 20 MeV GHEISHA
G3-FLUKA+MI	:	FLUKA, for neutrons with $E < 20$ MeV MICAP
G3-GH SLAC	:	GHEISHA with some bug fixes from SLAC
G3-GCALOR	:	E < 3 GeV Bertini cascade, 3 < E < 10 GeV hybrid Bertini, FLUKA, E > 10 GeV FLUKA for neutrons with E < 20 MeV MICAP
G4-LHEP	:	GHEISHA ported from GEANT3
G4-LHEP-BERT	:	E < 3 GeV Bertini cascade, $E > 3$ GeV GHEISHA
G4-LHEP-BIC	:	E < 3 GeV Binary cascade, $E >$ 3 GeV GHEISHA
G4-LHEP-GN	:	GHEISHA + gamma nuclear processes
G4-LHEP-HP	:	as G4-LHEP, for neutrons with E $<$ 20 MeV use evaluated cross-section data
G4-QGSP	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-QGSP-BERT	:	E< 3 GeV Bertini cascade, 3 $<$ $E<$ 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-QGSP-BIC	:	E< 3 GeV Binary cascade, 3 $<$ $E<$ 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-FTFP	:	E < 25 GeV GHEISHA, $E >$ 25 GeV quark-gluon string model with fragmentation ala FRITJOF
G4-QGSC	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-FLUGG	:	a FLUKA interface to GEANT4 geometry

Longitudinal Response, 1 GeV μ^-

- Structure is from
 - prototype "mix"
- Produces higher energy tail in odd Si layers
- Originally thought to be Fluka artefact, but also seen in G4 studies

A Study, Durham 02-Sep-2004

Energy deposition

Fluka attributes energy loss, either:

- At a point: elastic/inelastic recoils, low energy neutron kerma, etc.
- Distributed along a step: ionisation by charged particles
- For comparison with G3/G4, "old" fluka energy deposition algorithm (assigns ionisation energy at middle of step) is used.
 - Inaccurate when steps ~ volume size
 - Fluka authors strongly recommend track length apportioning algorithm

Fluka view of CALICE prototype

Nigel Watson / CCLRC-F

Direct comparisons with G3/G4

- Individual energy deposits from FLUKA are material type + (x,y,z)
- **CGA** method to provide $\{(x,y,z)\rightarrow cell index\}$ would be ideal
- Currently, use detailed knowledge of ECAL/HCAL geometry and active regions to
 - Sum energy deposits per cell per event
 - Write out hits files a la Mokka
 - ⇒ Allows direct comparison with G3/G4 model studies of GM/DRW
 - Labour intensive for changes to geometry/numbering...
- Some differences found between G3-4 vs. G3-FLUKA vs. G4+FLUKA (Flugg)
 - To be understood

<No. HCAL cells hit/event>,10 GeV π^-

RPC HCAL more stable vs. model than scint.

Models incorporating FLUKA >20% above G4-LHEP Nigel Watson / CCLRC-RAL 8 ECFA Study, Durham 02-Sep-2004

FLUKA based models ~ similar in different frameworks

Nigel Watson / CCLRC-RAL

9

Differences in EM response between G3/G4/Flugg frameworks

Nigel Watson / CCLRC-RAL

Energy/cell ~ agree OK

Nigel Watson / CCLRC-RAL

HCAL in FLUKA based models

Hcal cells hit lower for mixed G3-Fluka+Bertini, as earlier

Nigel Watson / CCLRC-RAL

ECFA Study, Durham 02-Sep-2004

ECAL in FLUKA based models

Flugg higher both in hits and energy

Consider muons and electrons separately
Nigel Watson / CCLRC-RAL
13
ECFA Study, Durham 02-Sep-2004

Agreements

Energy deposited/event

14

Disagreements

Summary

Comparison of G4/Fluka

- Alternative to deprecated G-Fluka
- Preferable to "standalone" Fluka as more efficient for variations in geometry

Emulation of old mokka output format allows direct comparison with GM/DRW studies

Integration with Mokka geometry classes Need to feed changes back to Mokka developers

Impact on test beam design (interpretation!) soon

Ongoing Work

- Improve reliability for larger samples
 - ~understood technical issue
- Review thresholds/step sizes to improve speed
 - Discuss material mixtures with FLUKA authors
- Alternative HCAL technology options
- Compare systematically with G3/G4 results,
 - Same initial conditions
 - Thresholds, mip normalisation, etc.
 - Adopt same output format as DRW/GM, integrate with GM studies.

Step Size & Cut-offs

- Two principal options
 - > Step such that fixed % of kinetic energy is lost in a given material \Rightarrow For e⁺/e⁻/ γ and μ /hadrons separately
 - Step length (range) in cm, in given detector region
 - \Rightarrow For all charged particles
- If both present, smaller of the two
- Default: 20% of energy loss
 - Poor for very thin regions
- Mainly interested in Si, where use:
 - > 3% energy loss for μ /hadrons
 - 6% energy loss for $e^{+}/e^{-}/\gamma$
 - 5-50 μm steps
- Fluka, have to specify min. e^+/e^- and γ energies (for each material)
- e⁺ only annihilate at end of step, all steps end on boundary crossing, accumulation near boundary
 - Choose 10 keV initially

"Flugg" Package (P.Sala et al)

Geomety & physics decoupled in G4 and Fluka

- Wrappers for f77/C++
- Fluka authors' comparisons of G4 with Flugg (FLUka+G4 Geometry)
 - Simple detectors, identical results
 - Complex T36 calorimeter: 81 layers Pb (10mm)-scint.(2.5mm) Consistent results
- Initial test benchmarks
 - Use T36 calorimeter as above

[From ATL-SOFT-98-039] Nigel Watson / CCLRC-RAL

Current Status

- Mokka running within flugg/Fluka framework
 - Using Mokka-01-05 + Geant4.5.0.p01 + clhep1.8.0 + gcc3.2
 - Flugg05 (Jan. 2003)
 - Fluka 2002.4 (May 2003)
- Procedure: start from Mokka release and delete:
 - All classes except for detector construction, detector parametrisation, magnetic field construction
 - Corresponding #include, variable, class definitions in .cc/.hh
 - Anything related to G4RunManager, DetectorMessenger
 - Code where SensitiveDetector is set
 - Interactive code, visualisation, etc.
- Validation
 - Minimal debugging tools in flugg, e.g. P55 prototype geometry
 - Library/compiler consistency (fluka object-only code)
- Using ProtEcalHcalRPC model
 - P66WNominal (driver proto01)
 - SinglehcalFeRPC1 (driver hcal03)

Nigel Watson / CCLRC-RAL

Flugg Operation

Two pass operation

- One-time initialisation
 - Read G4 geometry/material definitions
 - Generate fluka input cards
 - \Rightarrow Material/compound definitions
 - \Rightarrow Material to volume assignments
- Subsequent runs with a given geometry model
 - Use generated Fluka cards
 - Tracking within G4 geometry
 - Physics processes from Fluka
- Electromagnetic properties of materials not provided, have to create yourself using PEMF processor using Sternheimer tables, etc.
- Well described, but not so clear for exotic materials

Modelling Response

Consider variety of

- Particle species (e, μ , π , p)
- Energies
- Experimentally accessible distributions
- Look for combinations with significant difference compared to Geant models
 - Will exchange results with George M.!
 - Initially, pencil beam incident at 90° on ECAL front face at (x,z)=(0.5,0.5) [cm]
 - ▶ 1 GeV: 15k μ^{-} , 6k e⁻, 11k π^{-} , 8k p,
 - ▶ 10 GeV: 15k μ^- , 14k π^- , 8k p,

Transverse Response, 1 GeV μ^-

Durham 02-Sep-2004

Total Response, 1 GeV µ⁻

Sep-2004

Total Response, 1 GeV e⁻

Nigel Watson /

Total Response, 1 GeV π^-

1 02-Sep-2004

Longitudinal Response, 1 GeV µ⁻

Structure is from prototype "mix" Produces higher energy tail in odd Si layers Possibly related to e.m definition (NKW) To follow up with Fluka authors

itudy, Durham 02-Sep-2004