CALICE Calorimetry for LC

- Physics motivation
- Calorimetry
 - Design Considerations
 - CALICE
 - Status
- Future
- Summary

CALLE Calorimeter for LC 168 physicists28 institutes8 countries

UK: Bham, Cambridge, Imperial Manchester, RAL, UCL

Physics

Nigel Watson / CCLRC-RAL PPD

High Performance Calorimetry

Essential to reconstruct jet-jet invariant masses in hadronic final states, e.g. separation of vvW+W-, vvZ⁰Z⁰, tth, Zhh

Little benefit from beam energy constraint, cf. LEP

High Performance Calorimetry

Essential to reconstruct jet-jet invariant masses in hadronic final states, e.g. separation of vvW^+W^- , vvZ^0Z^0 , tth, Zhh

Nigel Watson / CCLRC-RAL PPD

High Performance Calorimetry

- Essential to reconstruct jet-jet invariant masses in hadronic final states, e.g. separation of vvW+W-, vvZ⁰Z⁰, tth, Zhh
 - LEP/SLD: optimal jet reconstruction by energy flow
 - Explicit association of tracks/clusters
 - Replace poor calorimeter measurements with tracker measurements - no "double counting"

- Charged particles (62%): measured in tracker
- > Photons (27%): ECAL separates γ 's from hadronic debris
- Neutral hadrons (10%): ECAL & HCAL

Nigel Watson / CCLRC-RAL PPD

ECAL Design Principles

- Measure 100% EM energy
 - **b** shower containment in ECAL, ΣX_0 large
- Resolve energy deposited by individual particles
 - small R_{moliere} and X₀ compact and narrow showers
- Separation of hadronic/EM showers
 - ▶ λ_{int}/X_0 large, \therefore EM showers early, hadronic showers late
- Minimal material in front of calorimeters
- Strong magnetic field
 - Interal separation of neutral/charged particles
 - keeps a lot of background inside beampipe
- Active medium: Silicon

⇒ Pixel readout, minimal interlayer gaps, stability Nigel Watson / CCLRC-RAL PPD RAL, 25-Jan-2005

ECAL, HCAL inside coil (cost!)

ECAL Design Principles

⇒ Pixel readout, minimal interlayer gaps, stability Nigel Watson / CCLRC-RAL PPD RAL, 25-Jan-2005

CALICE Programme

- Fine granularity calorimetry for energy/particle flow
- Integrated ECAL/HCAL R&D, both h/w and s/w
- Technology demonstration
- Nigel W Validate simulation, allow design optimisation

Test Beam Prototypes

- Combined ECAL & HCAL
- 1/2005: DESY, 6 GeV e⁻, (ECAL only)
- 9/2005+: physics run at FNAL MTBF p/π⁺ beam
- ECAL: 30 layers
- HCAL: 40 layers Fe +
 - "digital" pads
 - \Rightarrow **GEM**, **RPC**
 - \Rightarrow 350k, 1x1cm²
 - "analogue" tiles
 - \Rightarrow scintillator tiles
 - \Rightarrow (8k, 5x5cm²)
 - Tail catcher/muon tracker steel
 - ▶ 8 x 2cm layers, 8 x 10cm
 - 5cm scintillator strips

UK Effort

Simulation studies

- ECAL cost/performance optimisation
- Impact of hadronic/electromagnetic modelling on design.
- Comparisons of Geant4/Geant3/Fluka
- Provide readout electronics for the ECAL (+HCAL)
 - DAQ for entire system
 - Readout and DAQ for test beam prototype
- Reconstruction/Energy Flow
 - Started work towards ECAL/HCAL reconstruction
 - Ultimate goal Generic energy flow algorithm

<No. HCAL cells hit/event>,10 GeV π^-

RPC HCAL more stable vs. model than scint.

■ Models incorporating FLUKA >20% above G4-LHEP Nigel Watson / CCLRC-RAL PPD RAL, 25-Jan-2005

ECAL Electronics

- 30 layer prototype = 9720 channels
- 6 × 9U VME boards
 - 18 fold multiplexed analogue from 96 VFE chips
 - On board buffering for 2k events
- Based on CMS FED
 - Saved time
- Designed/built Imperial, RAL ID, UCL
- Prototypes 11/2003, pre-prod^{n.} 5/2004
- Board fab. 10/2004
- AHCAL/TC now to use these also
 - 7 more boards ordered from RAL

ECAL Prototype Overview

Nigel Watson / CCLRC-RAL PPD

RAL, 25-Jan-2005

Mechanical structure for TestBeam

Nigel Watson / CCLRC-RAL PPD

Production & Testing

- •PCB designed in LAL-Orsay, made in Korea (KNU)
- ·60 Required for Prototype
- •Automation, glue : EPO-TEK® EE129-4
- •Glue/place (± 0.1 mm) of 270 wafers with 6×6 pads
- •~ 10k points of glue.
- •Production line set up at LLR

RAL, 25-Jan-2005

Production & Testing

Nigel Watson / CCLRC-RAL PPD

Cosmics Tests

Cosmics Tests: Single Layer

RAL, 25-Jan-2005

Nigel Watson / CCLRC-RAL PPD

Cosmics Tests, 10 layers

Cosmics Tests, 10 layers

1st Beam Data From DESY

Nigel Watson / CCLRC-RAL PPD

Calice UK Future Plans

Case for Support - CALICE Calorimetry for the International Linear Collider

C.G.Ainsley², R.J.Barlow⁴, G.Boorman⁵, D.Bowerman³, J.Crooks⁶, P.D.Dauncey³,
M.J.Goodrick², B.J.Green⁵, M.G.Green⁵, C.M.Hawkes¹, R.Hughes-Jones⁴, S.Kolya⁴,
M.Lancaster⁷, G.Mavromanolakis², N.Pezzi⁷, M.Postranecky⁷, D.R.Price³,
F.Salvatore⁵, S.Snow⁴, R.J.Staley¹, R.J.Thompson⁴, M.A.Thomson², R.Turchetta⁶,
M.Tyndel⁶, E.G.Villani⁶, D.R.Ward², M.Warren⁷, N.K.Watson¹, J.A.Wilson¹,
M.Wing⁷, O.Zorba³

¹University of Birmingham, ²University of Cambridge, ³Imperial College London, ⁴Manchester University, ⁵Royal Holloway, University of London, ⁶Rutherford Appleton Laboratory, ⁷University College London

January 14, 2005

Executive Summary

The International Linear Collider (ILC) is seen by high energy physicists in all regions of the world as the most important new project in the subject. Its physics program has been shown to complement that of the LHC; in particular the ILC will be able to perform many high precision measurements. The CALICE collaboration brings together physicists from all parts of the world who have an interest in calorimetry for an ILC detector. The immediate focus for CALICE is the construction and testing of prototypes of highly granular calorimeters, using technologies suitable for the ILC, in test beams during 2005-6. Five UK groups were approved by the PPRP at the end of 2002 to join CALICE.

The UK contribution was to provide readout electronics and DAQ software for the CALICE electromagnetic calorimeter, and also to contribute strongly to software and analysis efforts. During the past two years, the electronics has been successfully constructed and the prototype is about to move into a test beam. We have also made a leading contribution to the software work in CALICE.

In: work in CALICE.

See this & other docs at http://www.hep.ph.ic.ac.uk/~calice/

London,

Nigel Watson / CCLRC-RAL PPD

3

To

RH

fla

CA

La

RAL, 25-Jan-2005

ps?)

Calice UK Future Plans

- 3 year programme, 2005-08
 - Fits well with schedule for C/TDR
- **Topics**
 - Existing test beam programme
 - DAQ
 - MAPS digital ECAL
 - Mechanical/Thermal
 - Simulation
- RHUL recently joined, interest from 1 other group flagged to PPRP
- CALICE already a global enterprise, all regions
- Large scope for expansion (\$\$ MAPS, DAQ, endcaps?)
- Interesting times ahead!

Come to PPRP review, 1 Feb. 2005, 10am, Senate House, London,

Nigel Watson / CCLRC-RAL PPD