CALICE Si/W ECAL prototype, first testbeam results

G.Mavromanolakis, University of Cambridge

Outline

- ► General
- ► Si/W prototype
- ► First testbeam results

► Summary

050319 ____

Int. Linear Collider Conf., LCWS2005, Stanford

General

► . particle flow paradigm

: highly granular EM and HADR calorimeters to allow very efficient pattern recognition for excellent shower separation and pid within jets to provide excellent jet reconstruction efficiency

CALICE ECAL(Si/W) and HCAL(Scint/Fe, RPC/Fe) prototype studies

- : debug technology/detector concept(s)
- : detector characterisation
- : test "particle flow paradigm", interplay between hard/soft-ware
- : test-validate-improve simulation codes and shower packages
- details about CALICE Si/W ECAL protoype follow

CALICE ECAL prototype

full Si/W prototype (24 X_0)

- \triangleright 30 layers \times 18 cm \times 18 cm interleaved with 0.5 mm Si pads
- **b** W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer
- \triangleright readout by 1 \times 1 cm² cells, total: 9720 channels

Si Wafer : 6×6 pads of detection (10×10 mm²)

Calibration with cosmics

D 10 layers (2160 channels) calibrated with cosmics (1 Mevents) (LLR-Paris, Dec04)

Calibration with cosmics

> a typical channel: gaussian noise, landau signal

Coherent/Common mode noise

(see talk by G.Gaycken)

- > pad and neighbour read-out by same chip (half wafer)
- > similar correlation between pads of different half wafers / wafers

CALICE-ECAL testbeam at DESY

"30%" equipped Si/W prototype

- : i.e. 14 W layers (10 at 1.4mm + 4 at 2.8mm) interleaved with 18×12 matrix of active Si cells, 1×1 cm² each, total: 3024 channels
- : first testbeam at DESY with electrons during Jan/Feb05

in summary (configurations: position × energy × angle)

- position scan (center edge corner of wafers) energy scan (mainly 1, 2, 3 GeV, some runs at 4, 5, 6 GeV) angle scan (0°, 10°, 20°, 30°)
- : total: \sim 25 Mevents (\sim 230 GB)

• next round in Jun05 with more layers-channels

CALICE-ECAL testbeam at DESY

ECAL

layout at DESY T21

DriftChambers and installation courtesy of Tsukuba Univ. and Kobe Univ.

"Response" vs cell threshold

> safe limit a threshold around 0.5 - 0.6 mip

b following analysis with threshold = 0.5 mip

"Tracking Calorimetry"

"Tracking Calorimetry"

"Tracking Calorimetry"

"Response" to electrons

no weighting, no event selection, no tracking
showers better contained at 30°

Transverse tomography

> no weighting, no event selection, no tracking

> distance between peaks = 1 cm = transverse granularity

Shower longitudinal profile

no weighting, no event selection, no tracking
odd/even asymmetry of construction observed
showers better contained at 30°

Testbeam layout

Position scan

ShowerX,Y from barycenter in ecal

> TrackX,Y from 4 drift chambers

Position scan - center of wafer

Position scan - center of wafer

 \triangleright **PRELIMINARY**

Wafer border

▷ (C.LoBianco, LC-DET-2004-007)

Position scan - edge of wafer

Position scan - edge of wafer

PRELIMINARY

Position scan - corner of wafer

Position scan - corner of wafer

 \triangleright **PRELIMINARY**

Summary

first "1/3" of CALICE Si/W ECAL prototype

- : 3024 channels of 1 \times 1 cm², 7.2 X_0
- : first testbeam at DESY with e^- (Jan/Feb05), very smooth, a lot of data collected

analysis has just started

: do systematic studies and understand the detector before the next round

next testbeam planned for Jun05

: with more layers-channels