Calorimetry for a Linear Collider Experiment

G.Mavromanolakis, University of Cambridge

Outline

- General Introduction
- Concepts and Challenges
- High granularity calorimetry and CALICE
- ► Si/W ECAL prototype, first results
- ► Summary

General

► • an e^+e^- linear collider at $\sqrt{S} = 0.5 - 1$ TeV range seems to be the next facility after the LHC

► • main advantages

- : well defined initial state
- : clean experimental environment

▶ · main goal

- : to perform precision measurements
 - ▷ Higgs sector
 - SUSY spectroscopy
 - DM candidates, extra dimensions

⊳...

Experimental environment

e^+e^- cross sections

Higgs branching ratios

G.Mavromanolakis, Seminar@RHUL

Experimental environment - example

▶ an "easy" case, $e^+e^- \rightarrow ZH$

- : note, for $H \rightarrow WW \rightarrow qqqq$ then +2 more jets
- events with
 - : many jets
 - charged leptons
 - : missing energy

need detector with excellent

- flavor tagging capability
- jet reconstruction efficiency
- : tracking, momentum resolution
- hermeticity

G.Mavromanolakis, Seminar@RHUL

Detector requirements

• vertexing:
$$\sigma_{r\phi,z}(IP) \leq 5 \ \mu m \oplus \frac{10 \ \mu m \ \text{GeV/c}}{p \ sin^{3/2} \theta}$$

: (1/5 $R_{\rm beampipe},$ 1/30 pixel size, 1/30 thinner wrt LHC)

► • central tracking: $\sigma(\frac{1}{p_t}) \le 5 \times 10^{-5} (\text{GeV/c})^{-1}$

: (\sim 1/10 wrt LHC, 1/6 of material in tracking volume)

• jet energy resolution:
$$\frac{\sigma_{E_{jet}}}{E_{jet}} \simeq \frac{30\%}{\sqrt{E_{jet}(\text{GeV})}}$$

: (1/200 calorimeter granularity wrt LHC)

+ hermeticity

+ time resolution

Detector concepts

► 3 concepts from 3 continents

COMPACT : Silicon Detector (SiD), American initiative
LARGE : Large Detector Concept (LDC), European initiative
EXTRA LARGE : Global Large Detector (GLD), Asian initiative

concept	Solenoid	VertexDet	Tracker	ECAL	HCAL
SiD	5 T	Si	Si	Si/W	RPC/Fe, RPC/W, ?
LDC	4 T	Si	TPC	Si/W	scint/Fe, RPC/Fe, ?
GLD	3 T	Si	TPC	scint/W	scint/Pb

Detector concepts - relative size

(S.Komamiya)

Detector concepts - relative size

Particle flow paradigm

try to reconstruct every particle of the event in order to improve the jet energy resolution

visible energy of a typical jet

- : \sim 60 % charged particles
- : \sim 30 % photons
- : \sim 10 % neutral hadrons

particle flow step-by-step

- : use tracker to measure charged particle momentum
- : use ECAL to measure photon energy
- : use HCAL+ECAL to measure neutral hadron energy
- : use tracker+ECAL+HCAL to disentangle charged from neutrals

Jet energy resolution

particles in jet	fraction of energy in jet	detector	single particle resolution	jet energy resolution
charged particles	60 %	tracker	$rac{\sigma_{p_t}}{p_t}\sim 0.01\%\cdot p_t$	negligible
photons	30 %	ECAL	$\frac{\sigma_E}{E} \sim 15\%/\sqrt{E}$	$\sim 5\%/\sqrt{E_{jet}}$
neutral hadrons	10 %	HCAL+ECAL	$\frac{\sigma_E}{E} \sim 45\%/\sqrt{E}$	$\sim 15\%/\sqrt{E_{jet}}$

$\blacktriangleright \cdot \sigma_{jet} = \sigma_{charged} \oplus \sigma_{photon} \oplus \sigma_{neutral} \oplus \sigma_{confusion}$

- : confusion term comes from misassignment of energy to wrong particles due to double-counting, overlapping clusters, bad track-shower reconstruction etc
- : improve confusion term by having better pattern recognition → highly granular calorimetry

Challenge

role for calorimeters

: not so much as efficient energy measurement devices but mostly as

imaging detectors to provide excellent 3D reconstruction of showers for very efficient pattern recognition and particle separation

strong interplay between hardware and software

Granularity to the limit

CALICE Collaboration

- : formed to conduct the R&D effort needed to bring initial conceptual designs for the **calorimetry** to a final proposal suitable for an experiment at the future linear collider
- : 32 institutes from 9 countries from Europe, America, Asia, about 200 physicists and engineers
- : strong participation from UK institutes
 - ▷ Birmingham University
 - Cambridge University
 - Imperial College London
 - Manchester University
 - Rutherford Appleton Laboratory
 - Royal Holloway University of London
 - Diversity College London

CALICE Collaboration

objectives

- : build and operate very highly granular calorimeters and demonstrate proof of principle
- : do extensive individual and combined testbeam studies towards detector optimisation

roadmap

- : debug technology/detector concept(s)
- : detector characterisation
- : test "particle flow paradigm", interplay between hard/soft-ware
- : test-validate-improve simulation codes and shower packages

Concepts to study

ECAL

- : Si pads and W absorber, $1 \times 1 \text{ cm}^2$ granularity, prototype with 30 layers, 24 X_0 , total: ~ 10000 channels
- : advantage: stability of Si properties
- : disadvantage: cost

HCAL

- : scintillator tiles and steel absorber, central part with $3 \times 3 \text{ cm}^2$ granularity, 1 m³ prototype with 40 layers, ~ 4.5 λ_I , total: ~ 8000 channels
- : advantage: conventional technology
- : disadvantage: complexity of operation

HCAL readout chain

(M.Groll)

Concepts to study (continued)

digital HCAL RPC

- : Resistive Plate Chambers and steel absorber, $1 \times 1 \text{ cm}^2$ granularity, 1 m³ prototype with 40 layers, ~ 4.5 λ_I , total: 400000 channels
- : advantage: very high granularity, simple operation
- : disadvantage: digital concept to be proven

digital HCAL GEM

- : Gas Electron Multipliers and steel absorber, $1 \times 1 \text{ cm}^2$ granularity, 1 m³ prototype with 40 layers, ~ 4.5 λ_I , total: 400000 channels
- : advantage: very high granularity
- : disadvantage: digital concept and technology to be proven

A common problem from the start

 detector design optimisation is a long and labor intensive process of simulation studies

• common sense

: a final detector with about a billion channels and xxx Meuros cost, then better be sure that simulation codes used are close to reality

► • the problem from the very start

: simulation studies reveal significant discrepancies among shower packages, thus preventing model independent predictions on calorimeter performance and reliable detector design optimization

► solution

: testbeam program with CALICE ECAL+HCAL prototypes to resolve the situation and reduce the current large uncertainty factors

model tag		brief description
G3-GHEISHA	:	GHEISHA
G3-FLUKA+GH	:	FLUKA, for neutrons with E < 20 MeV GHEISHA
G3-FLUKA+MI	:	FLUKA, for neutrons with E < 20 MeV MICAP
G3-GH SLAC	:	GHEISHA with some bug fixes from SLAC
G3-GCALOR	:	E< 3 GeV Bertini cascade, 3 $<$ $E<$ 10 GeV hybrid Bertini/FLUKA, $E>$ 10 GeV FLUKA, for neutrons with $E<$ 20 MeV MICAP
G4-LHEP	:	GHEISHA ported from GEANT3
G4-LHEP-BERT	:	E < 3 GeV Bertini cascade, $E > 3$ GeV GHEISHA
G4-LHEP-BIC	:	E< 3 GeV Binary cascade, $E>$ 3 GeV GHEISHA
G4-LHEP-GN	:	GHEISHA + gamma nuclear processes
G4-LHEP-HP	:	as G4-LHEP, for neutrons with $E<$ 20 MeV use evaluated cross-section data
G4-QGSP	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-QGSP-BERT	:	E< 3 GeV Bertini cascade, 3 $< E<$ 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-QGSP-BIC	:	E< 3 GeV Binary cascade, 3 $<$ $E<$ 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model
G4-FTFP	:	E < 25 GeV GHEISHA, $E >$ 25 GeV quark-gluon string model with fragmentation ala FRITJOF
G4-QGSC	:	E< 25 GeV GHEISHA, $E>$ 25 GeV quark-gluon string model

-

_

ECAL+HCAL scint "response" vs model, π^- 10 GeV

N cells hit

E deposited

b different models predict different calorimeter response

> HCAL more sensitive than ECAL

> EM discrepancies between frameworks seen by ECAL

HCAL scint - HCAL rpc

> strong model dependent prediction of shower width

Calorimetry for a Linear Collider Experiment

G.Mavromanolakis, University of Cambridge

Outline

- ► General Introduction
- Concepts and Challenges
- ► High granularity calorimetry and CALICE

► Si/W ECAL prototype, first results

► Summary

CALICE ECAL prototype

full Si/W prototype (24 X_0)

- \triangleright 30 layers \times 18 cm \times 18 cm interleaved with 0.5 mm Si pads
- **b** W absorber, 10+10+10 layers, 1.4 mm:2.8 mm:4.2 mm thick per respective layer
- \triangleright readout by 1 \times 1 cm² cells, total: 9720 channels

Si Wafer : 6×6 pads of detection (10×10 mm²)

ECAL board

(G.Gaycken)

CALICE readout card

- Calice Readout Card (CRC) VME board
 - Modified CMS silicon tracker readout board
 - Does VFE PCB control, digitisation and data buffering

(P.Dauncey)

Cosmics

Calibration with cosmics

D 10 layers (2160 channels) calibrated with cosmics (1 Mevents)

(LLR-Paris, Dec04)

Calibration with cosmics

> a typical channel: gaussian noise, landau signal

CALICE-ECAL testbeam at DESY

• "30%" equipped Si/W prototype

- : i.e. 14 W layers (10 at 1.4mm + 4 at 2.8mm) interleaved with 18 \times 12 matrix of active Si cells, 1 \times 1 cm² each, total: 3024 channels
- : first testbeam at DESY with electrons during Jan/Feb05

► • in summary (configurations: position × energy × angle)

- position scan (center edge corner of wafers) energy scan (mainly 1, 2, 3 GeV, some runs at 4, 5, 6 GeV) angle scan (0°, 10°, 20°, 30°)
- : total: \sim 25 Mevents (\sim 230 GB)

• next round in Jan06 with more layers-channels

In brief

"1/3" of CALICE Si/W ECAL prototype

- : 3024 channels of 1 imes 1 cm 2 , 7.2 X_0
- : first testbeam at DESY with e^- (Jan/Feb05), a lot of data collected

data analysis

- : in progress, mostly qualitative for basic understanding and debugging of the system
- : quantitative analysis still possible
 - b useful for planning and guiding the next testbeam
 - results indicative of detector characteristics
 - > pilot-reference studies to be repeated as detector grows

CALICE-ECAL testbeam at DESY

ECAL

layout at DESY T21

DriftChambers and installation courtesy of Tsukuba Univ. and Kobe Univ.

Testbeam layout

"Tracking Calorimetry"

"Tracking Calorimetry"

"Tracking Calorimetry"

Shower longitudinal profile

- **> shower maximum is contained**
- > odd/even asymmetry of construction observed
- \triangleright showers better contained at 30°

Tracking - Residuals

- ShowerX,Y from barycenter in ecal
- > TrackX,Y from 4 drift chambers

Position resolution

Residual RMS as a function of the number of ecal layers used

Position resolution

 \triangleright highly granular ECAL \longrightarrow excellent position resolution

Position resolution - undersampling

- do tracking by using only hits from every 2nd layer
- to investigate the tracking performance of an ecal with 5 layers × 2.8 mm W (instead of 10 layers × 1.4 mm W)
- expect position resolution to degrade by factor $\frac{\sigma_5}{\sigma_{10}} \approx \frac{\sqrt{10}}{\sqrt{5}}$

Response map - center of wafer

Response Inhomogeneity

response variation around the center of wafer

Response map - center/edge/corner of wafer

Wafer border

▷ (C.LoBianco, LC-DET-2004-007)

Position scan along wafer borders

Response Inhomogeneity

response variation around the center/edge/corner of wafer

Moliere radius

Transverse containment (Moliere radius)

Status and Outlook

Si/W ECAL prototype

: first testbeam at DESY with e^- (Jan/Feb05), a lot of data collected, analysis in progress

► · analogue HCAL

: in final stage of construction, first testbeam expected in summer 2006

• digital HCALs

: studies at single layer level, ready to scale-up construction (funding permitting)

► years to come

: series of individual and combined testbeams at DESY, CERN, FNAL, ...

from concepts+questions towards answers and a final design

CALICE world tour
Ecole Poly 2004/5 - cosmicsDESY 2005/6 - e beam

FNAL 2007/8 – hadron beam

CERN 2006 – hadron beam (P.Dauncey)

Summary

• an experiment at a future LC

- : strict requirements for vertex, tracking and calorimetric detectors
- : a lot of R&D effort needed (= money \times time \times bright manpower)

• CALICE Collaboration

: to conduct the R&D for calorimetry

: the main goal

highly granular EM and HADR calorimeters to allow very efficient pattern recognition for excellent shower separation and pid within jets to provide excellent jet reconstruction efficiency

- : concepts-prototype studies
 - Si/W ECAL, scint analogue HCAL, gaseous digital HCALs
 - loop over simulation-testbeam-analysis chain started
 - ▷ a lot to come, a lot to learn