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• CALICE MAPS Concept, design and 

simulation results
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• Exact ICL beam timing parameters not yet defined
• Assume close to previous (“TESLA”) design
• Beams collide rapidly within a quick burst (“train”)
• Long dead time between trains

• Worst case timing assumption as follows
• Beam collision rate within train =  6.7 MHz, i.e. 150ns between collisions
• Number of collisions within train = 14000, i.e. train is 2ms long
• Train rate = 10Hz, i.e. 100ms between trains; 2% duty cycle

• Rate of signals
• ILC is not like LHC; rate of physics processes is small
• Most collisions give nothing, but when reaction does happen, many adjacent 

channels will be hit
• Expected rate not very well known; needs detailed simulation modeling
• Assume average ~10−6 hits/pixel/crossing, which is ~0.005 hits/pixel/train

TESLA 500GeV 

ILC operationILC operation
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CALICE ECAL descriptionCALICE ECAL description
• CALICE has a baseline ECAL design

• Sampling calorimeter, alternating thick conversion layers (tungsten) and thin 
measurement layers (silicon)

• Around 2m radius, 4m long, 30 layers W and Si, total Si area including endcaps ~ 
2×107cm2

• Silicon sensor detectors in baseline are diode pads

• Pad readout is analogue signal; digitized by Very Front End (VFE) ASIC mounted next 
to sensor

• Average dissipated power 1 µW/mm2

• Pad size between 1.0×1.0 and 0.5×0.5cm2; total number of pads around 20 - 80M

• Mechanical structure

• Half of tungsten sheets embedded in carbon fiber structure

• Other half of tungsten sandwiched between two PCBs each holding one layer of silicon 
detector wafers

• Whole sandwich inserted into slots in carbon fiber structure
• Sensitive silicon layers are on PCBs ~1.5m long × 30cm wide
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CALICE ECAL descriptionCALICE ECAL description

Si wafers

ECAL baseline design
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Diode pad PCB, with VFE (left) and without (right)

q Baseline design largely unaffected by use of MAPS 
instead of diode pads

q Potential benefits include:
• Reduced PCB section for  MAPS               Decrease 

in    Molière radius              Increased resolution

• Increased surface for thermal dissipation
• Less sensitivity to SEU

• Cost saving (CMOS standard process vs. high 
resistivity Si for producing 2 × 107 cm2 and/or 
overall more compact detector system)

• Simplified assembly ( single sides PCB, no need for 
grounding substrate)

CALICE MAPS conceptCALICE MAPS concept
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• Additional potential benefits arising from dividing wafer into small pixels so to have low 
probability of more than one particle going through each pixel. 

• Discrimination of single MIP allows binary readout. High granularity improves jet resolution 
or reduces number of layers (thus cost) for the same resolution.

• With around 100 particles/mm2 ~ 1 % probability of double hit implies pixel size of ~ 40 ×
40µm2

• Current design with 50 × 50µm2 pixel

• Total number of pixel for ECAL around 8 × 1011 pixels Tera-pixel system

• Record collision number each time hit exceeding threshold (timestamp stored in memory 
on sensor )

• Timestamps read out in between trains

CALICE MAPS designCALICE MAPS design
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• First prototype designed in CIS 0.18 µm process will be submitted January 2007 
• Different pixel architectures included in the first prototype  
• Includes faulty pixels masking, variable threshold 
• Data rate of pixels dominated by noise
• High threshold reduces false hits and crosstalk
• ‘Optimal’ pixel layout and topology essential to guarantee good S/N thus possibility of 

using high threshold

CALICE MAPS designCALICE MAPS design
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q Pixel layout optimization
• Maximization of signal 
• Minimization of charge sharing 

(crosstalk)
• Collection time
q Large phase space
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• Pixel size
• Diode size
• Diode layout
• Biasing
• Process

Simulation Satisfactory ? Design

CALICE MAPS designCALICE MAPS design
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• 21 hits simulated, 5 µm pitch

• 121 extrapolated hits / pixel

• 961 extrapolated hits / cell

Pixel layout

1

21

50 µm

3.5x3.5 µm2 1.8x1.8 µm2

Epitaxial thickness: 12 µm

0V

1.5 V3.3 V

CALICE MAPS design CALICE MAPS design -- pixel simulation pixel simulation --

Cell size: 50 x 50 µm2
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diodes Collected charge vs (x,y)

Bias conditions
•Diode : 1.5V fixed
•Nwell: 3.3V
•Pwell: 0V
•Subs: float
•T = 300 K

CALICE MAPS design CALICE MAPS design -- pixel simulation pixel simulation --

Charge sharing reduction with 
comparator’s threshold

Comparator’s threshold: 50 e-Comparator’s threshold: 75  e-Comparator’s threshold: 100 e-Comparator’s threshold: 125 e-Comparator’s threshold: 150 e-Comparator’s threshold: 175 e-Comparator’s threshold: 200 e-Comparator’s threshold: 225 e-Comparator’s threshold: 250 e-
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|S(x,y)-Sq |/ Sq

Central cell Qcoll(x,y) sample

e- threshold

≈-18% 
@140 e-

Q lost in NWell

e-

CALICE MAPS design CALICE MAPS design -- pixel simulation pixel simulation --

Q collected by 
diodes
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Diode charge collection time (x,y)

q Collection time ~ 250 ns for pixel 
coverage

q Needs further optimization

250 ns

CALICE MAPS design CALICE MAPS design -- pixel simulation pixel simulation --

300 ns350 ns

10-7
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Example of architecture of 
pixel with CDS 

CALICE MAPS design CALICE MAPS design -- pixel architecture pixel architecture --
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CALICE MAPS design CALICE MAPS design -- pixel architecture pixel architecture --

Example of pixel 
architecture with CA, 
shaper and adjustable 
comparator
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•Serves 42 pixels arranged in 
row

•Around 8 % dead area

Hit logic

CALICE MAPS design CALICE MAPS design -- system logic system logic --
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CALICE MAPS design CALICE MAPS design -- area estimate area estimate --
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Readout

Control

Pad & Power Ring

Pixels

Test Bump Pads Test Structures

36 pixels 36 pixels

1800um
200um

1800um

4000um

200um

80 pixels

•Around 200 m dead area 
every 2mm
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• Minimum charge signal for full pixel coverage ~ 200 e-

• S/N ~ 10 achievable
• Collection time ~ 250 ns for pixel coverage: optimisation needed
• Likelihood of double hits following collection time reduction in progress
• Improved diodes layout and pixel architecture study in progress
• Power issues require further analysis

ConclusionsConclusions


