Simulation of Monolithic Active Pixel Sensors for ILC ECAL

International Workshop on Silicon Sensors

for High Energy Physics and Astrophysics

16th December, 2006

Ewha Woman's University, Seoul, Korea

CALICE collaboration

CALLICE Calorimeter for ILC

PP\RC

<u>Y.Mikami</u>, O.Miller, N.Watson, J.Wilson University of Birmingham,

P.Dauncey, A-M.Magnan, M.Noy Imperial College London,

J.Crooks, M.Stanitzki, K.Stefanov, R.Turchetta, M.Tyndel, G.Villani CCLRC - Rutherford Appleton Laboratory

Outline

• MAPS (Monolithic Active Pixel Sensors) ECAL

- Concepts
- > Design
- Geometry modification in GEANT4 simulation
- Demonstration of single $e^{-\mu}$ events using full detector simulation
- Sensor simulation
- Summary of status
- Future prospects

MAPS ECAL concept

• High granularity

- Small cells
- Digital calorimetry
- Detecting individual particles after electromagnetic shower
- Result in measuring a single particle in each cell
- Binary readout
 - → Higher spatial resolution
 - Better performance for particle separation inside jets

Cost saving

- CMOS (Complementary Metal Oxide Semiconductor) silicon
 - Cheaper than higher resistive pure silicon

MAPS Introduction

Analogue design in Mokka simulation

- 1cm X 1cm cell
- 500µm Si sensitive thickness
- Analogue readout

MAPS design

- 50µm X 50µm cell
- 15µm Si sensitive thickness
- Binary readout

Si-W sandwich:

Si physical thickness and W thickness are the same for both default design and MAPS design in LDC01.

Si physical thickness: 500µm W thickness: 2.1mm for first 20 layers 4.2mm for last 10 layers

Physical detector slabs

Mechanical structure is the same both for analogue and MAPS designs.

Charge collected mainly by diffusion:

(This is not yet modelled for the result of Geant4 simulation which I will show in later slides.)

- Optimization of the diode location and size is necessary.

Geometry modification in Geant4 full detector simulation

- Mokka 06-00, LDC01
- Ecal02.cc (ECAL Geant4 driver) is modified.
- Consistency checks:
- Geant4 Adaptive GUI output is fine.
- > Energy deposit ratio agrees with expectation. (i.e. 15μ m/500 μ m =3.0%)
- > Layer position shift agrees with expectation.
- Linearity for sensitive thickness dependence is represented. (Please see next slide)

Single e⁻ simulation (1) (Si sensitive thickness dependence)

- 20 GeV single electron (from IP to zenith with 4T magnet on)
- Cell size is 1cm X 1cm
- No threshold is applied for energy of cell hits.

Single e⁻/µ⁻ simulation (2) (Energy deposit of cell hits)

Single e⁻ simulation (3) (Cell size dependence)

• 100GeV single e⁻ • 15µm Si sensitive thickness • No threshold and no noise is applied. Cell hit energy distributions: • Before sensor level response is implemented. hit energy hit energy hit energy hit energy ×10³ £140 240 450F 70000 $400 \mu m X 400 \mu m$ 220 ¹/₂ 100μm x 100 μm 25µm x 25µm 50µm x 50µm 400 E S 200 60000 350E <u>;</u> 50000 300 ell 40000 250E 120 ()200 F 30000 150**₽** 20000 10000 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 Cell hits energy GeV Cell hits energy GeV Cell hits energy GeV Cell hits energy 0 keV **Multi MIPs increase Landau tail Charge sharing effects** at cell boundary 50µm x 50µm cell size is good working assumption. shower particles 1mm

25 µm

100µm

50 µm

Single e⁻ simulation (4) (Incoming electron energy dependence)

- 15µm Si sensitive thickness
- 50µm X 50µm cell size
- No threshold and no noise is applied.
- Before sensor level response is implemented.

1550

1800

v position mm

16th Dec. 2006, Seoul Yos

Cell hit energy distributions:

v position mm

1800

1750

1550

1800

v position mm

Linearity for energy measurement

- Energy proportional to counting number of cell hits.
- 4T B field (1GeV e⁻ is injected just in front of ECAL, other energy e⁻ is from IP.)
- No threshold and no noise is applied for cell hit energy.
- Before sensor level response is implemented.
- Counting number of cell hit in a event without clustering.
- Weighted number of cell hits is used for different W thickness layers.

Adding realism: Including sensor level response Charge collection simulation (1)

- Full 3D device simulation
- Injected 1 MIP charge at 21 separate positions on a grid of 5 μ m pitch.
- Using the symmetry the collected charge in the rest of the device is extrapolated

Charge collection simulation (2)

- ~50% of the charge collected when a MIP hits the N-well
- Collected charge increases with the diode size

Sensor layout example

Actual test structure design

- Sensors from foundry arrive at RAL July 2007
- 200µm dead area in every 2mm in test structure -> will be reduced.

Summary of status

- MAPS geometry is implemented in full detector simulation.
- Each cell has only one secondary particle in most cases.
- 50µm X 50µm cell size is reasonable starting assumption.
- > Other ongoing studies
 - Sensor level simulation
 - Noise and digitization
 - MAPS Electronics
 - MAPS DAQ

Future Prospects

- First sensors fabricated in August 2007
- Second sensor fabrication run, delivery July 2008
- Comparison between data and simulation
 - MAPS geometry (After 2007 MAPS sensor is available.)
- Energy resolution study with sensor response
- Clustering algorithm development
- Spatial resolution study
- Physics studies

Back up(1) Single e⁻ simulation (3.b) (Cell size dependence)

- 100GeV e⁻
- 15µm Si sensitive
- No threshold and no noise is applied.
- Before sensor level response is implemented.

In small cell case (less than $\sim 100 \ \mu m \ X \ 100 \ \mu m$):

- > Only one secondary particle pass each cell in most case.
- > One MIP's energy deposit is sharing by neighbour cell.

Minimum step size effect?