

The latest CALICE activities

Fabrizio Salvatore

Royal Holloway University of London

HEP seminar, Edinburgh, 30th November 2007

Rationale for a Linear Collider

- The LHC start up next year is expected to mark the beginning of a new era of exciting discoveries in particle physics
 - Higgs boson and TeV scale new physics (SUSY? ED?)
- However, despite its formidable potential as a discovery machine, the LHC will not be able to answer many questions about the nature of the new physics that is expected to be observed at the TeV scale
 - Proton-proton machine
- To do that, will need a machine where precision physics at TeV scale is possible
 - International Linear Collider (ILC)
 - Electron-positron machine
 - Clean and well controlled initial state

Challenges for detector design at ILC

		Critical	Critical Detector	Required
Physics Process	Measured Quantity	System	Characterstic	Performance
ZHH $HZ \rightarrow q\bar{q}b\bar{b}$ $ZH \rightarrow ZWW^*$ $\nu\bar{\nu}W^+W^-$	Triple Higgs Coupling Higgs Mass $B(H \rightarrow WW^*)$ $\sigma(e^+e^- \rightarrow \nu\bar{\nu}W^+W^-)$	Tracker and Calorimeter	Jet Energy Resolution, $\Delta E/E$	Jet Energy Resolution ∆E/E = 3-4%
$\begin{array}{l} ZH \rightarrow \ell^+ \ell^- X \\ \mu^+ \mu^- (\gamma) \\ ZH + H \nu \nu \rightarrow \mu^+ \mu^- X \end{array}$	Higgs Recoil Mass Luminosity Weighted E_{cm} $B(H \rightarrow \mu^+\mu^-)$	Tracker	Charged Particle Momentum Res., $\Delta p_t/p_t^2$	Momentum Resolution ∆p/p ² =10 ⁻⁵ [GeV ⁻¹]
$HZ, H ightarrow bar{b}, car{c}, gg$ $bar{b}$	Higgs Branching Fractions b quark charge asymmetry	Vertex Detector	Impact Parameter, δ_b	- Impact Parameter Resolut Δδ _b = 5 ⊕ 10/p sin ^{3/2} θ [μm]
SUSY, eg. $\tilde{\mu}$ decay	$\tilde{\mu}$ mass	Tracker, Calorimeter	Momentum Res., hermeticity	Solid Angle Coverage ΔΩ = 4π-ε

Excellent performances of all sub-detectors is a must !

Calorimetry at ILC

- Calorimetry is one of key ingredients for a high-specs detector at the ILC
 - Need high granularity for precise jet energy resolution

•
$$\sigma_{jet} = \sigma_{charg} \oplus \sigma_{phot} \oplus \sigma_{neut} \oplus \sigma_{confusion}$$

• Design, build and operate a novel detector which fulfils stringent requirements: $\sigma_{jet} / E_{jet} = 30\% / \sqrt{E}$

CALICE: build prototypes and perform an intensive test beam programme to characterize various calorimeter concepts

neutral hadrons

10 %

 $\text{HCAL+ECAL} \quad \tfrac{\sigma_E}{E} \sim 45\%/\sqrt{E}$

 $\sim 15\%/\sqrt{E_{jet}}$

Why 30%/√E ?

 Aiming at jet energy resolution giving di-jet mass resolution similar to Gauge boson widths

The Particle Flow paradigm

• Highly performing Particle Flow Algorithms (PFA) combined with high granularity calorimeters are a must to fulfil the ILC physics programme

Challenges for Calorimetry

The CALICE collaboration

The ECAL project

- Study of particle flow for $\sigma_{\rm E}/{\rm E} \sim 30\%/\sqrt{\rm E}$ Validation of hadronic interaction models in MC 22nd of October 2007 F. Salvatore.

Goal of the collaboration

To provide the basis for choosing a calorimeter technology for the ILC To measure electromagnetic and hadronic showers in high granularity detectors

Characterization of physics/technical prototypes:

- Tests of different technologies (silicon, scintillator, gas)
- Definition of large prototypes (1m³ for HCALs)
- Study of appropriate shapes for ILC detectors
- Study of mechanical issues (cooling, supports, etc...)
- Electronics and DAQ for prototypes and future ILC detectors
- Detailed test beam programs

To advance calorimeter technologies and our understanding of calorimetry To design, build and test ILC Calorimeter prototypes

SciW ECAL prototype

Cross section 9cmx9cm Test@DESY(This winter) -> In EM shower (Non linearity of MPPC) Cross section 18cmx18cm Test@Fermilab(2007) -> In multi particle injection / Pi0 reconstruction

Analog HCAL prototype

- 38 layers of scintillator tiles (90x90 cm²) with steel absorber (15 in 2006 tb)
- High granularity
 - 3x3 + 6x6 + 12x12 cm² tiles
 - 30 modules with fine granularity (216 tiles) and 8 with coarse granularity (141 tiles)
 - 7608 readout channels (SiPM)
 - Total interaction length = 4.5 λ
- Common DAQ for
 ECAL+AHCAL+TCMT

Measurements of shower leakage and μ identification provided by Tail Catcher + Muon Tracker (TCMT)

 96 cm of iron absorber with 16 layers of 5*50mm² scintillator strips

F. Salv

DHCAL prototypes

• RPC + steel absorber (1x1 cm²)

- 1m³ prototype, 4.5 λ_I
- 40K channels

MICROMESH

GEMs + steel absorber (1x1 cm²) 1m³ prototype, 4.5 λ₁

40K channels

Page states of the second relation of the sec

- Layers equipped with Micro MEsh GAseous Structure chambers
 - Readout by pads or strips

Evolution of the detector concepts

Solenoid Designs B=5,4,3 Tesla
Si vs TPC Tracking
"Particle Flow" Calorimeters

Dual SolenoidCompensating CalTPC Tracking

Calorimeter models

A real tracking calorimeter

We are working towards prototyping calorimeters for particle flow algorithms for the ILC !

Outline

• The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Other CALICE activities in the UK
- Conclusions and Outlook

Outline

- Data taking summary
- Preliminary ECAL and AHCAL results
- The 2007 CERN test beam
 - Installation
 - Data taking overview
 - Detectors' performances
- Future test beam plans
- Other CALICE activities in the UK

Conclusions and Outlook

The 2006 CERN test beam

Summary of the data taken

Size on disk: ~ 40 kB/evt

- → 65M events = 2.5 TB for CERN Physics runs
- → + 70 M = 3 TB for muon calibration runs

ECAL resolution and linearity

Longitudinal shower development

Transverse shower profile

90% of EM shower contained in R_M

Gap between PCB and W layer increases $R_M(W) \rightarrow R_M(eff)$

AHCAL response to electrons

- AHCAL alone (15 layers)
- Remove hits below 0.5 mip
- Energy sum of whole AHCAL, fit mean response
- Linearity better than 6%

Response to pions

- Energity simal shower et belover and dead to MC sinci EISHAN (alu sioutrasti Elysphi) wers
 - Gendered Rrefind as Aexplected (full neutron response)
- Line gret detailed analysis needed for quantitative results
 b) x²/ndf
 b) x²/ndf
 c) x²/ndf
 <lic) x²/ndf
 <lic) x²/ndf
 c) x²/ndf<

Summary of 2006 test beam

- Analysis of 2006 data well under way
 - More than 9TB of data to analyze !
- Excellent performance of the ECAL
 - Very encouraging preliminary results on resolution, linearity and longitudinal shower development
- First results from e/π AHCAL results
 - Encouraging results for EM studies
 - Promising results from pion beam data
- Expect first publications by end of this year

Outline

• The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Other CALICE activities in the UK

Conclusions and Outlook

A difficult start....

Beam line setup

The CERN beam

• Excellent beam

	14 bp/16.8 sec	day
Super-cycle:	(17 bp/20.4 sec from	15/08)
	12 bp/14.4 sec	night/w-e

• Secondary beam energies:

-80 GeV wobbling	π⁻ (40-100 GeV) and e⁻ (15-50 GeV)
-10 GeV wobbling	π ⁻ and e ⁻ (6-25 GeV)
+60 GeV wobbling	π ⁺ /p(30-80 GeV) and e ⁺ (10-50 GeV)
-130 GeV wobbling	π⁻ (60-180 GeV) and e⁻ (70-90 GeV)

The test beam programme: energies and particle types

• Very intense test beam programme

7 weeks of continuous data taking

(July	/ 5 th	\rightarrow	August	22 nd)
-------	-------------------	---------------	--------	--------------------

	Proposed in TB plan	Collected during TB
Energy (GeV)	6,8,10,12,15,18,20,25,30,40,50,60,80	6,8,10,12,15,18,20,25,30,40,50, 60,80,100,120,130,150,180
Particles	π [±] /e [±]	π [±] /e [±] /protons

 π/e (π/p) separation achieved using Cherenkov threshold detector filled with He (N₂) gas

Possible to distinguish π from e(p) for energies from 25 to 6 (80 to 30) GeV

The test beam programme: angles and position scans

Total events collected

DAQ rate

- Low energy beams (6-25 GeV)
 - Trigger rate on 10x10 adjusted in beam files using available collimators
 - Average rate ~ 600 pps@ 6 GeV,

~1-3K pps@ 8-25 GeV

DAQ rate ~35-60 Hz

- High energy beams (30-180 GeV)
 - Trigger rate on 10x10 set to <10K pps to prevent damage to the detectors
 - Average rate ~8K pps
 - DAQ rate ~70-80 Hz

ECAL and AHCAL response Stability of ECAL Response E(GeV) Irradiation of one PCB -90 (mips) -70 (see next slide) -50 9000 Fit Mean -30 8000 eet -25 -20 7000 -18 -15 HH 1 4 4 4 4 4 6000 -12 -10 5000 ITI 4 4 4 4 -6 4000 IHH Q Q QQ 0 10 0 15 3000 20 5 59 25 2000 30 AHCAL alone runs 1000 40 50 200 400 600 800 1000 1200 1400 160 Stability of HCAL Response E(GeV) Run Nu -180 -150 it Mean (mips π + π --130 4500 -120 -100 4000 -80 -60 3500 -50 Plots made during shifts, -45 10° 204 井田山 3000 -40 no corrections applied -35 -25 2500 H IH -20 II II -18 2000 IH I Ťπ 111 -15 -12 1500 Ter -10 -B 1 # 쁥 1000 30 40 Q. 6 50 500 60

80

22nd of October 2007

F.

0

200

400

600

800

1200

1000

1400

1600

Run Number

Irradiation of ECAL PCB

5 position scan for each of the 4 chips on the special ECAL slab
- 90 (and 70) GeV electron beam used

22nd of October 2007

~1.2 M events per chip

CALO response to p/μ beam

ECAL and AHCAL response to π and protons, distinguished using signal from Cherenkov detector

AHCAL calibration performed using samples of several million muons at the different angles

TCMT response

Summary of data taking time

Time since 5 th of July	4 147 200 sec
14.4s super-cycle	2 389 798 sec
16.6s (20.4s) super-cycle	889 829 sec
Power cuts	86 400 sec
Summer students	57 600 sec
π/e/p data	1 790 698 sec
muons (100x100)	153 976 sec
muons (20x20)	131 752 sec
AHCAL only	365 195 sec
Calibration	318 447 sec
SPS up-time	79.1%
Beam controlled by H6B	76.1% (99.2% of up time)
DAQ taking analysis data	62% (81.5% of beam in H6B)
DAQ on calibration	15.1%

Summary of the 2007 test beam

- This year's test beam has been a huge success !
- The test beam programme has been completely fulfilled, thanks to the hard work of everyone involved and to the extra weeks given to us by CERN
- The participation in the test beam has been incredible and full of enthusiasm from everyone in the collaboration
- We have ~14 TB of data available on the grid ready to be analyzed

Analysis of 2007 data under way

Analysis of 2007 test beam data has started

- ECAL
 - Physics performances: linearity and resolution
 - Detector performances: study of nei
 - Irradiation of test PCB with in
 - Particle flow algorithm
 data
- AHCAL+TCMT
 - Detector
 SiPM
 SiPM

Macomperature dependence of SiPM signal

ronics

erformances: linearity and resolution

mparison with existing MC models: characterization of electromagnetic and hadronic showers

Outline

• The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Other CALICE activities in the UK
 Conclusions and Outlook

The next test beam at FNAL

CERN test	Proposed plan for the test beam (4 weeks)	Achieved results at the test beam (7 weeks)
Particle type	π ⁻ (π ⁺), e ⁻ (e ⁺)	$\pi^{+/-}$, $e^{+/-}$, protons.
Energy points (GeV)	6 - 80	6 - 180
Angles (deg)	0, 10, 15, 20, 30	0, 10, 20, 30

Preliminary ideas for the test at FermiLab:

- Low energy points: E < 6 GeV, $e/\pi/p$ (minimum E = 0.5 GeV)
- Integration of prototypes: test of SiW/SciW-ECAL+AHCAL/DHCAL
- Physics program: establish data set for comparison with CERN data and AHCAL/DHCAL data
- Angles: 15 deg. (missing in 07 tb), 30 deg. ECAL+AHCAL
- Technical studies: ECAL noise, integrated chip, AHCAL long term stability...

Outline

• The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Other CALICE activities in the UK
 Conclusions and Outlook

Towards a DAQ for the ILC

- The UK plays a major role in the design and development of a Data Acquisition for the final ILC detectors
- Based on the idea developed in CALICE R&D, i.e. common DAQ for all detectors

- ODR: commercial FPGA board
- Custom made firmand software

- LDA: commercial FPGA board
- Custom made add-ons
 - Gbit ethernet to ODR
 - Many links to DIFs

MAPS ECAL Design

- Monolithic Active Pixel Sensors
 - Alternative readout sensor for the Calice ECAL
 - High granularity and digital readout
 - CMOS manufacturing: now a mature technology
- "Swap-In": leaving mechanical structure untouched

- Sensor and electronics in one wafer
- Charge collection in epi-layer
 - Charge collected by diffusion
- n-well isolated with 3 µm thick "deep p-well"
- Novel INMAPS process for the CALICE MAPS

- Specific Design for Calice
 - Pixel Size 50 x 50 μ m² (10¹² for ECAL)
 - Binary readout: 1 bit ADC realized as comparator
 - 4 diodes for charge collection
 - 13 bit time stamping
 - Hit buffering for entire bunch train
 - Capability to mask individual pixels
 - Threshold adjustment for each pixel

Plans for prototype testing

- Test sensors delivered this summer
- First test are being carried out
 - Charge diffusion using laser setup @ RAL
 - 1064, 532 & 355 nm wavelength
 - Focusing < 2μm
 - 4ns pulse, 50Hz rep. rate
 - Fully automated
 - Cosmic and source setup provided by Imperial and Birmingham

Test Sensor

Area of 1 x 1 cm² ~ 28,000 pixels

Testing different architectures nwell or p-well

Extensive simulation studies Charge collection effects

Resolution versus threshold

Leading UK role: simulation, design, testing

Particle Flow Algorithms

- PFA measures jet energies by summing up charged track momenta, γ energy deposits in ECAL and neutral hadron energies in HCAL
 - Can PFA meet the ILC performance specs ?

UK has leading role in PFA studies

Mark Thomson's PandoraPFA is a proof of principle that PFA can work !

	rms90
_	$\sigma_{\rm E}/{\rm E} = \alpha \sqrt{({\rm E}/{\rm GeV})}$
LJET	cosθ <0.7
45 GeV	0.295
100 GeV	10.305
180 GeV	0.418
250 GeV	0.534

An excellent start !

• PFAs show the importance of optimizing the integrated detector performance of Magnet+Vertexing+Tracking+Calorimetry

Outline

• The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Other CALICE activities in the UK
- Conclusions and Outlook

Conclusions and Outlook

- The CALICE collaboration is very healthy !
- We are entering in the publications phase
 - Two papers are being prepared on the 2006 test beam, and will be out by the end of the year
 - Analysis on the 2007 data is well under way
- Ready for our next phase of beam tests
 - Preliminary discussion on next year's tb programme already started
- We are growing !
 - Three new institutes asked to join last month
- Lot's of involvement in the UK
 - UK is taking a major role in test beam and DAQ studies for the ILC
 - MAPS technology, if proven, could take the UK to a leading role in the development of the next generation calorimeters