

Sensitivity to the Higgs self-coupling using full simulation

Michele Faucci Giannelli, Mike Green, Veronique Boisvert, Fabrizio Salvatore, Tao Wu

ILD Workshop, Cambridge, 12 September 2008

Overview

- Theory: from ZHH cross section to Higgs selfcoupling
- Event simulation and reconstruction
- Jet energy resolution in 6-jet environment
- Cut-based analysis
 - B tagging importance
 - Kinematics fit
- Comparison with perfect PFA
- Conclusion

Theory

Effect of second and third diagram is that the sensitivity on the cross section and the self coupling are not linear.

Physics parameters

 This process is best studied at 500 GeV and with a Higgs mass of 120 GeV to maximize the cross section

Royal Holloway University of London

- Given the Z and Higgs SM decays:
 - BR (Z→qq) 70%
 - BR (H→bb) 73%

- Main channel is qqbbbb (40%)
 - vvbbbb (16%)
 - qqbbWW (12%)
 - Ilbbbb (only 4.5%)

- The signal cross section is 0.18 fb
 - less than 100 signals for 500 fb⁻¹
 - Only 34 qqbbbb events
- There are several background with 6-jet final state:
 - tt is the main background: $\sigma = 710 \text{ fb}$
 - 160,000 hadronic events
 - -WWZ

Royal Holloway

University of Lond

- tbtb
- ZZZ, ZZH
- ZZ and ZH plus gluon emission

12 September 2008

- Two studies performed by P. Gay and T. Barklow.
- P. Gay group achieves a resolution on the cross section of ~10% using all Z decay channels
- T. Barklow reaches ~ 20% using only hadronic one.
- Both use 2000 fb⁻¹ instead of 500 fb⁻¹ and jet energy resolution of 30%/ \sqrt{E}
- However these analyses do not have gluon emission
 - Barklow made a study pointing out a factor 2 worse resolution when using gluon emission
- Considering both the luminosity and the gluon emission factors, a resolution of about 80% should be achieved

Royal Holloway

Samples generated at RHUL

- 500 fb⁻¹ simulated and reconstructed
 - Generator: Pandora Pythia and Whizard
 - Beam line: NLC500
 - Polarization: 80% (e⁻), 0% (e⁺)
- Mokka v06-04

Royal Holloway

- Detector model: LDC00Sc
- Physics list: LCPhys
- Reconstruction similar to mass production:
 - Pandora and Perfect Pandora
 - Vertex reconstruction (vertex charge included)

Jet energy resolution

- The reconstructed jets are paired to the Monte Carlo quarks using the combination that maximize the sum of the six scalar products
- All jets are divided in bins of energy, for each bin the resolution is evaluated

12 September 2008

Royal Holloway University of London

Jet energy resolution

NB: reconstruction tested on $Z \rightarrow uu$ events and RMS agrees with M. Thomson results.

12 September 2008

Royal Holloway University of London

Boson mass resolution

 Using the same pairing, it is possible to reconstruct the bosons using the correct jets

12 September 2008

Royal Holloway University of London

Analysis

- Particle flow creates the clusters and reconstructed particles
- 6 jets required in the analysis
- Jets are used by the vertex reconstruction to perform b,c tagging
- Preliminary cuts are applied
- Jets are combined to form the boson using a χ^2 variable
- The distribution of the minimized χ^2 is used to separate the signal and the backgrounds

 b tagging plays a central role in reducing the background: requiring 3.9 NNBtag

• After the cut $S/\sqrt{(S+B)} = 0.24$

12 September 2008

Royal Holloway University of London

Used cuts

- Topological cuts:
 - $\cos(\theta_{thrust})$
 - Thrust
 - Fox-Wolfram moments
- Missing energy:
 - Total reconstructed energy

Used cuts

2 and 4 jets events can be rejected using:

Royal Holloway

University of Lond

- Jets EnergyEM/Energy
- Jet number of particles
- Y₆
- Number of charged tracks
- Multi variables optimization performed to maximize S/√(S+B)
- After cuts $S/\sqrt{(S+B)} = 0.36$

40

50

60

ZHH

70

0.005

100

90

#tracks

Jet pairing

- The jets are combined in all 45 possible permutations
- For each permutation a χ^2 is evaluated

Royal Holloway

University of

• The combination that give the minimum χ^2 is chosen

Combining b tagging

• A second χ^2 has been used combining the masses (PFA dependent) and b tagging

$$\chi^{2} = \frac{\Psi_{12} - M_{Z}^{2}}{\sigma_{Z}^{2}} + \frac{\Psi_{34} - M_{H}^{2}}{\sigma_{H}^{2}} + \frac{\Psi_{56} - M_{H}^{2}}{\sigma_{H}^{2}} + \sum_{i=3,4,5,6} MNbtag(i) - 1^{2}$$

 The constant A in b tagging term is optimized maximizing S/√(S+B)

Royal Holloway University of London

Kinematic fitting

• Kinematics fitting performed varying the jet energy E^{fit}

$$\chi^{2} = \frac{4 \int_{12}^{fit} - M_{Z}}{\sigma_{Z}^{2}} + \frac{4 \int_{34}^{fit} - M_{H}}{\sigma_{H}^{2}} + \frac{4 \int_{56}^{fit} - M_{H}}{\sigma_{H}^{2}} + \frac{4 \int_{56}^{fit} - M_{H}}{\sigma_{H}^{2}} + \frac{5 \int_{12}^{fit} - M_{H}}{\sigma_{H}^{2}} + \frac{5 \int_{1$$

- Two possibilities to constrain the Higgs: – Hard constraint $\rightarrow \sigma_{\rm H} = 30$ MeV
 - Soft constraint $\rightarrow \sigma_{\rm H} = 7.2 \text{ GeV}$
- A optimized as before

12 September 2008

Royal Holloway

University of

 σ

S/√(S+B)

Perfect PFA

- Realistic PFA
- Best S/√(S+B): 0.59
- 3.6 signal events
- 33 background events:
 - 23 hadronic tt
 - 3 tbtb
 - 2 wwz
 - 1 ttz
 - 1 tth
 - 1 semileptonic tt

- Perfect PFA
- Best S/√(S+B): 0.59
- 3.5 signal events
- 31.2 background events:
 - 18 hadronic tt
 - 5 tbtb
 - 2 ttz
 - 2 tth
 - 1 zzh
 - 1 wwz
 - 1 semileptonic tt

- The process ZHH→qqbbbb has been studied using full simulation of 500 fb⁻¹ using LDC00Sc
- The resolution ($\frac{\sqrt{S+B}}{S}$) to such process is 170% – About a factor 2 worse than fast MC studies
- Since Perfect PFA has similar performances of realistic PFA, the main difference should be in b-tagging performances
- NN analysis almost complete
 - Preliminary results do not show significant improvement

Royal Holloway

B tagging

Royal Holloway

University of London

Better b tagging efficiency for b jets Fake rate for c jets is 25% higher Fake rate is almost double for light jets

Difference is only due to environment, can it be corrected?

tt always higher than Z, can it be energy dependent?

Outlook

- Double check NN analysis
- Release a LC note with final results
- At RHUL the analysis will continue with a master student
 - Focus on DST files for detector optimization
- Improvement on b tagging
 - train network for 6 jet environment

Backup Slides

12 September 2008

12 September 2008

2000

Cross sections

Event type	σ (fb)	Events/500fb ⁻¹	Generated events (PP)	Simulated events (Mokka)	% of available events/500fb ⁻¹
Zhh (tot)	0.16	80			
Zhh→qqbbbb	0.0593	34	1000	1000	3375
ttbar (lept)	73	36500	100000	30000	82
ttbat (mixed)	310	155000	100000	45000	29
ttbar (cqcq)	82	41000	200000	41000	100
ttbar (uquq)	82	41000	200000	15000	37
ttbar (cquq)	164	82000	300000	41000	50
bbh	10.6	5300	30000	16000	302
ZZh	0.174	87	1000	1000	1150
ZZZ	1.05	525	0	0	0
WWZ	35.3	17650	0	0	0
tth	0.15	75	0	0	0
ttZ	0.7	350	0	0	0
tbW	16.8	8400	0	0	0

12 September 2008

Differences with Fast Simulation

12 September 2008

Neural Network analysis

- The neural network package developed for the vertex reconstruction is used.
- A separate sample has been generated to train the network (~125 fb⁻¹)
- The training is performed using the back propagation algorithm and 300 epochs.
- Several combination of inputs and nodes in the hidden layer have been tested
 - From 5 to 35 inputs variables
 - From 1 to 45 nodes in hidden layer
- The best result is achieved when 35 variables are used.
- The best network structure is 35:40:1

12 September 2008

Royal Holloway

Iniversity of Lor

Most relevant input variables

Since the high combinatorial in pairing to form the bosons is the reason the background simulate ZHH events, the most effective χ^2 variables are those in which the number of combination are reduced imposing the b jets to for the Higgs or to be the jets not coming from the W.

12 September 2008

Royal Holloway

NN output

12 September 2008

Separation

- The separation improves within the statistical error
- 0.60 0.15 is the best S/√(S+B) achieved
 Cut based analysis reached 0.59 0.06