Digital ECAL: Lecture 1

Paul Dauncey Imperial College London

DECAL lectures summary

- Lecture 1 Ideal case and limits to resolution
 - Digital ECAL motivation and ideal performance compared with AECAL
 - Shower densities at high granularity; pixel sizes
 - Effects of EM shower physics on DECAL performance
- Lecture 2 Status of DECAL sensors
 - Basic design requirements for a DECAL sensor
 - Current implementation in CMOS technology
 - Characteristics of sensors; noise, charge diffusion
 - Results from first prototypes; verification of performance
- Lecture 3 Detector effects and realistic resolution
 - Effect of sensor characteristics on EM resolution
 - Degradation of resolution due to sensor performance
 - Main issues affecting resolution
 - Remaining measurements required to verify resolution

DECAL lectures summary

- Lecture 1 Ideal case and limits to resolution
 - Digital ECAL motivation and ideal performance compared with AECAL
 - Shower densities at high granularity; pixel sizes
 - Effects of EM shower physics on DECAL performance
- Lecture 2 Status of DECAL sensors
 - Basic design requirements for a DECAL sensor
 - Current implementation in CMOS technology
 - Characteristics of sensors; noise, charge diffusion
 - Results from first prototypes; verification of performance
- Lecture 3 Detector effects and realistic resolution
 - Effect of sensor characteristics on EM resolution
 - Degradation of resolution due to sensor performance
 - Main issues affecting resolution
 - Remaining measurements required to verify resolution

DECAL: basics

- Requirements for linear collider ECAL
 - Highly granular to allow particle flow
 - Reasonable EM shower resolution
- Covers range of energies relevant to hadronic jets; 1-100 GeV
 - Take typical energy as 10GeV
- Effect of DECAL on PFA not yet studied in detail
 - Complex optimisation; depends on detector details
- Compared to analogue ECAL, DECAL presented here may have
 - Improved energy resolution
 - Improved position resolution
 - Lower cost
- Assume this cannot harm PFA

DECAL: Motivation

- Average number of charged particles in an EM shower ∝ incident energy
 - Fluctuations around the average occur due to statistical nature of the shower
- Average energy deposited in the sensitive layers ∝ number of charged particles
 - Fluctuations around the average occur due to angle of incidence, velocity and Landau spread
- Number of particles is a better measure than energy deposited of the shower energy

Simulation study of concept

- Use simplified "typical" ILC calorimeter geometry
 - 30 layers of silicon-tungsten
 - $20 \times 0.6X_0 + 10 \times 1.2X_0$ giving $24X_0$ total
- 500µm thick silicon to give analogue energy deposit
 - No electronics, noise, etc, effects included; "ideal" analogue case
- Count number of particles emerging from back of each silicon sensor

Shower depth dependence

- Number of particles and energy deposited closely related; both peak at layer ~11
- Proportional with ~ 0.26MeV/particle

Energy spread per particle

- 0.26MeV is not a constant but an average
- Energy has extra spread due to fluctuations
- Dominated by Landau contribution
- Does not affect number of particles

Reconstruction of total shower energy

Paul Dauncey

Reconstruction of total shower energy

Example resolution

- E_{total} for 10 GeV photons
- Counting particles gives better resolution
- Find mean and width for many different photon energies

EM shower mean = linearity

• Both number of particles and energy deposited show good linearity

EM shower width = resolution

Paul Dauncey

Aside: Fischer discriminant

- Linear weighted combination of N variables
- Take number of particles per layer (or energy per layer) as 30 variables and find weights which minimise resolution

Fischer discriminant: resolution

Only minor improvement...

Digital ECAL concept

- How can we measure the number of charged particles???
- Make pixellated detector with small pixels and count pixels
- Probability of more than one charged particle per pixel must be small
- Allows binary (digital) readout = hit/no hit

Pixel size

- Any realistic sensor has to be pixellated
- With digital (binary) readout, each pixel gives a single bit
- Two particles within one pixel will lead to undercounting and non-linearity
 - Analogous to saturation effects in SiPMs and DHCAL
- How small do the pixels need to be? Compromise
 - Non-linearity minimised by smaller pixels
 - Channel count and power minimised by larger pixels
- Critical quantity is density of particles within EM showers
 - Go for largest pixel size which does not harm resolution

Particle density vs radius

- Area of first bin $\pi r^2 \sim 3 \times 10^{-4} \text{ mm}^2$
- Only ~0.6 particles/event in this bin
- Density in other bins falls off exponentially

Core particle densities

- Core density is balance of
 - Increasing number of particles
 - Increasing transverse spread
- Spread wins; core density is highest in first few layers
 - Absolute number of particles is low here
- Note, peak in density is NOT at shower maximum, layer ~11

Core particle density vs energy

Effect of pixellation

• If pixels too big, probability of two particles in one pixel is higher

Effect of pixellation

• Compare original number of particles with number of hit pixels

Effect of pixellation

- Conclusion: 50µm is sufficiently small
- Factor 100 smaller than AECAL cells of 5mm
- Cross-check
 - AECAL expects up to ~4000 particles per cell
 - Roughly ~0.4 particles per 50µm pixel
- Assume 50µm for rest of lectures

Pixellation effect: linearity and resolution

CLIC energies

• Typical hadrons not 1TeV but for fun, see what happens at these energies...

Critical points

- •Counting particles gives better resolution than energy deposited
- •Core density is highest well before shower maximum
- •Pixels of 50µm will give good performance up to at least 100GeV