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DECAL lectures summary
• Lecture 1 – Ideal case and limits to resolution

• Digital ECAL motivation and ideal performance compared with AECAL

• Shower densities at high granularity; pixel sizes

• Effects of EM shower physics on DECAL performance

• Lecture 2 – Status of DECAL sensors

• Basic design requirements for a DECAL sensor

• Current implementation in CMOS technology

• Characteristics of sensors; noise, charge diffusion

• Results from first prototypes; verification of performance

• Lecture 3 – Detector effects and realistic resolution

• Effect of sensor characteristics on EM resolution

• Degradation of resolution due to sensor performance

• Main issues affecting resolution

• Remaining measurements required to verify resolution
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DECAL: basics
• Requirements for linear collider ECAL

• Highly granular to allow particle flow

• Reasonable EM shower resolution

• Covers range of energies relevant to hadronic jets; 1-100 GeV

• Take typical energy as 10GeV

• Effect of DECAL on PFA not yet studied in detail

• Complex optimisation; depends on detector details

• Compared to analogue ECAL, DECAL presented here may have

• Improved energy resolution

• Improved position resolution

• Lower cost

• Assume this cannot harm PFA
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DECAL: Motivation
• Average number of charged particles 

in an EM shower incident energy

• Fluctuations around the average occur 

due to statistical nature of the shower

• Average energy deposited in the 

sensitive layers number of charged 

particles

• Fluctuations around the average occur 

due to angle of incidence, velocity and 

Landau spread

• Number  of particles is a better 

measure than energy deposited of the 

shower energy

Sensitive Layers
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Simulation study of concept
• Use simplified “typical” ILC calorimeter geometry

• 30 layers of silicon-tungsten

• 20×0.6X0 + 10×1.2X0 giving 24X0 total

• 500 m thick silicon to give analogue energy deposit

• No electronics, noise, etc, effects included; “ideal” analogue case

• Count number of particles emerging from back of each silicon sensor

• DECAL energy measure

20×0.6X0 + 10×1.2X0
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Shower depth dependence
• Number of particles and energy deposited closely related; both peak at layer ~11

• Proportional with  ~ 0.26MeV/particle

Particles Energy
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Energy spread per particle

• 0.26MeV is not a 

constant but an average

• Energy has extra spread

due to fluctuations

• Dominated by Landau

contribution

• Does not affect number 

of particles
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Reconstruction of total shower energy

Etotal = ∑i=0,29 wi Ei
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Reconstruction of total shower energy

×1

×2

×1.5

Etotal = ∑i=0,29 wi Ei

Why 1.5?!?
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Example resolution

• Etotal for 10 GeV 

photons

• Counting particles 

gives better resolution

• Find mean and width 

for many different 

photon energies

Particles

Energy
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EM shower mean = linearity
• Both number of particles and energy deposited show good linearity

Particles Energy
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EM shower width = resolution

20×0.6X0 + 10×1.2X0

a = 0.9, b = 12.8%

a =1.1,  b = 16.0%

E/E = a b/ E(GeV)

Particles

Energy
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Aside: Fischer discriminant

• Linear weighted 

combination of N 

variables

• Take number of 

particles per layer (or 

energy per layer) as 

30 variables and find 

weights which 

minimise resolution

Original weights

Optimised weights
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Fischer discriminant: resolution

Only minor improvement...

Original weights

Optimised weights
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Digital ECAL concept
• How can we measure the number of charged particles???

• Make pixellated detector with small pixels and count pixels

• Probability of more than one charged particle per pixel must be small

• Allows binary (digital) readout = hit/no hit

Analogue ECAL Digital ECAL
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Pixel size
• Any realistic sensor has to be pixellated

• With digital (binary) readout, each pixel gives a single bit

• Two particles within one pixel will lead to undercounting and non-linearity

• Analogous to saturation effects in SiPMs and DHCAL

• How small do the pixels need to be? Compromise

• Non-linearity minimised by smaller pixels

• Channel count and power minimised by larger pixels

• Critical quantity is density of particles within EM showers

• Go for largest pixel size which does not harm resolution
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Typical shower particles; 10GeV photon
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Particle density vs radius

Core ~ 2000 particles/mm2

• Area of first bin r2 ~ 

3×10−4 mm2

• Only ~0.6 particles/event in 

this bin

• Density in other bins falls 

off exponentially
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Core particle densities

• Core density is balance of

• Increasing number of 

particles

• Increasing transverse 

spread

• Spread wins; core density is 

highest in first few layers

• Absolute number of 

particles is low here

• Note, peak in density is NOT

at shower maximum, layer ~11



18 Sep 2008 Paul Dauncey 51

Core particle density vs energy
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Effect of pixellation

• If pixels too big, probability of two particles in one pixel is higher

Small: Npixels = Nparticles  Big: Npixels < Nparticles 
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Effect of pixellation

• Compare original number 

of particles with number 

of hit pixels
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Effect of pixellation

• Conclusion: 50 m is 

sufficiently small

• Factor 100 smaller than 

AECAL cells of 5mm

• Cross-check

• AECAL expects up to 

~4000 particles per cell

• Roughly ~0.4 particles per 

50 m pixel

• Assume 50 m for rest of 

lectures
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Pixellation effect: linearity and resolution

Small non-linearity ~1%

a = 1.0, b = 12.9% 

E/E = a b/ E(GeV)

Effectively unchanged
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CLIC energies
• Typical hadrons not 1TeV but for fun, see what happens at these energies...

10% effect
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Critical points

•Counting particles gives better resolution 

than energy deposited

•Core density is highest well before shower 

maximum

•Pixels of 50 m will give good performance 

up to at least 100GeV


