Digital ECAL: Lecture 2

Paul Dauncey Imperial College London

DECAL lectures summary

- Lecture 1 Ideal case and limits to resolution
 - Digital ECAL motivation and ideal performance compared with AECAL
 - Shower densities at high granularity; pixel sizes
 - Effects of EM shower physics on DECAL performance
- Lecture 2 Status of DECAL sensors
 - Basic design requirements for a DECAL sensor
 - Current implementation in CMOS technology
 - Characteristics of sensors; noise, charge diffusion
 - Results from first prototypes; verification of performance
- Lecture 3 Detector effects and realistic resolution
 - Effect of sensor characteristics on EM resolution
 - Degradation of resolution due to sensor performance
 - Main issues affecting resolution
 - Remaining measurements required to verify resolution

DECAL lectures summary

- Lecture 1 Ideal case and limits to resolution
 - Digital ECAL motivation and ideal performance compared with AECAL
 - Shower densities at high granularity; pixel sizes
 - Effects of EM shower physics on DECAL performance
- Lecture 2 Status of DECAL sensors
 - Basic design requirements for a DECAL sensor
 - Current implementation in CMOS technology
 - Characteristics of sensors; noise, charge diffusion
 - Results from first prototypes; verification of performance
- Lecture 3 Detector effects and realistic resolution
 - Effect of sensor characteristics on EM resolution
 - Degradation of resolution due to sensor performance
 - Main issues affecting resolution
 - Remaining measurements required to verify resolution

Basic scale for full DECAL

- Typical ILC SiW ECAL calorimeter
 - 30 layers, each a cylinder of ~ 5m×10m ~ 50m² surface area
 - Total sensor surface area including endcaps ~ 2000m² needed
- DECAL sensor aims to be "swap-in" for AECAL silicon
- For DECAL, with pixels $\sim 50 \times 50 \mu m^2$ i.e. $\sim 2.5 \times 10^{-9} m^2$
 - Need $\sim 10^{12}$ pixels in total
 - "Tera-pixel calorimeter"

Constraints for implementation

- 10¹² is a VERY large number
- Impossible to consider individual connection for each pixel
 - Needs very high level of integration of electronics
 - Make sensor and readout a single unit
 - "Monolithic active pixel sensor" = MAPS
- Difficult to consider any per-channel calibration
 - Even only one byte per pixel gives 1TByte of calibration data
 - Need to have highly uniform response of pixels

CMOS as a sensor

- Physical implementation chosen uses CMOS
 - C = Complimentary; can implement both p-type and n-type transistors
 - MOS = Metal-Oxide-Semiconductor; type of transistor
 - Since both types of transistor are available, can have complex readout circuit on sensor
- Readout circuitry is all on top surface of sensor
 - Occupies ~1µm thickness
- Standard production method as for computer chips, digital cameras, etc.
 - Can be done at many foundries; could be cheaper than AECAL sensors!

CMOS epitaxial layer

- Sensor has an "epitaxial layer"
 - Region of silicon just below circuit
- Typically is manufactured to be 5-20µm thick
 - We use 12µm
- Only ionised electrons within this region can be detected

Signal collection

- Electrons move in epitaxial layer simply by diffusion
 - Ionised electrons can be absorbed by an n-well structure
 - Make n-well diodes for signal collection within circuit layer
 - Takes ~100ns; OK for ILC
- **PROBLEM**: p-type transistors in CMOS ("p-MOS") also have an n-well
 - Any p-type transistors in circuit will also absorb signal so it is lost
 - Low collection efficiency or restrict circuit to use n-type transistors only?

Deep p-well process

- Developed "protection" layer for circuit n-wells; "deep p-well"
- Cuts off n-wells from epitaxial layer and so prevents them absorbing signal
- Allows full use of both n-type and p-type transistors without large signal loss

TPAC1

- Tera-Pixel Active Calorimeter sensor
- To investigate issues of DECAL; not a realistic ILC prototype
- 168×168 array of 50×50µm² pixels
- Analogue test pixel at edge
- Total ~28,000 pixels
- Size $\sim 1 \times 1 \text{cm}^2$
- Made with 0.18µm CMOS deep p-well process

TPAC1 in-pixel circuit

- Four n-well signal input diodes
- Charge integrating pre-amplifier
- Shaper with RC time constant ~100ns
- Two-stage comparator with configurable per-pixel trim
- Monostable for fixed-length output

• Pixel effectively completely full; high component density means high power

• ~10 μ W/pixel when running; ~40 μ W/mm² including ILC power pulsing

TPAC1 on-sensor memory

- Monostable outputs from 42 pixels in each row tracked to memory regions
- A hit above threshold is stored in memory with timestamp (i.e. bunch crossing ID)
- Need four memory regions, each 5 pixels wide
- Dead space; 5/47 ~ 11%

Digital readout and threshold

$$\rightarrow$$
 S = $-dR/dE_T$

- Can measure spectrum even with digital readout
- Need to measure rate for many different threshold values
- Scan threshold values using computer-controlled DAC

No signal: pedestal and noise

Paul Dauncey

Pedestal spread

- Pedestals have large spread ~20 TU compared with noise
- Caused by pixel-to-pixel variations in circuit components
 - Pushing component sizes to the limit
- Per-pixel adjustment used to narrow pedestal spread
 - Probably not possible in final sensor

Noise spread

- Noise also has large spread
- Also caused by variations in components
- Average ~6TU

Charge diffusion

- Signal charge diffuses to signal diodes
- But also to neighbouring pixels
- Pixel with deposit sees a maximum of ~50% and a minimum of ~20%
- Average of ~30% of signal charge
- The rest diffuses to pixel neighbours

Paul Dauncey

Charge diffusion measurements

• Inject charge using IR laser, 1064nm wavelength; silicon is transparent

Charge diffusion measurements

Paul Dauncey

Calibration: ⁵⁵Fe source

- Use 55Fe source; gives 5.9keV photons, compared with ~3keV for charged particle
- Interact in silicon in very small volume ~1µm³ with all energy deposited; gives 1620e⁻
- 1% interact in signal diode; no diffusion so get all charge
- Rest interact in epitaxial layer; charge diffusion so get fraction of charge

Calibration: test pixel analogue signal

- Interactions in signal diode give monoenergetic calibration line corresponding to 5.9keV
- Can see this in test pixel as analogue measurement of spectrum

Calibration: test pixel analogue plateau

• Can also use lower plateau from charge spread ~30% of 5.9keV

Calibration: digital pixel analogue plateau

- Comparator saturates below monoenergetic 5.9keV peak; cannot use 🟵
- In digital pixels can only use lower plateau
- Sets scale: 1 TU ~ $3e^-$ so noise (ENC) ~ $6TU \sim 20e^-$

Critical points

- TPAC1 sensor is understood
- Fundamental signal charge ~1000e⁻
- Charge reduced by diffusion to neighbouring pixels
- Maximum ~ 500e⁻, minimum ~200e⁻, noise ~20e⁻
- Dead area from memory storage ~11%
- Not realistic ILC sensor
 - Too small $\sim 1 \times 1 \text{cm}^2$
 - Pixel variations (pedestal, noise) too big
 - Power consumption too high