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& | What and why?
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% Challenges and constraints

e Constraints on trigger come from:

» Accelerator: Bunch crossing rate, pile-up and multiple interactions, beam-gas interactions

» P
e

nysics: W

ectrons a

nat is required to make the decision to keep or reject an event? Simple objects like

nd jets, track finding, matching objects together....

» Output: How much data can you write to tape” How much can you reconstruct at an
acceptable rate”?
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% Some Important definitions

e Goo0d trigger will capture it's design physics and anything unexpected and
reject common pProcesses

e Deadtime
» Trigger is not live for some reason so cannot take data

® Prescaling (downscaling)
» Take every nth event that fires your trigger
» Adjust n to allowed bandwidth

® Pass-through events (mark and pass)
» Randomly select an event and allow it to pass the trigger regardless of any criteria
» Useful to study and validate trigger systems
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% The first trigger?

o B

O
d

ackett pioneered a technique to trigger the ca

mnera

f cloud chambers (and got the Nobel prize tor

nd other work)

his

e Just missed out on discovering the positron in 1932

e Stevenson and Street used this to confirm the

d

iIscovery of the muon in 1937

e Can measure momentum and ionisation (~1/(32)

e Derive mass of particle - not electron or proton
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Bubble chambers

 Accelerator gave a low-level trigger
» Each expansion photographed

e DAQ was photographs

e Offline selection was human (looking at
ohotographs)

e Only the most common processes observed

* Need to scan a huge number of photographs
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% -Ixed-target experiments
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® Real physics triggers Foernal rarger
around in the ‘60s S

® Discovery of CP violation

® Experiment triggered on coincidence of scintillators and Cerenkov detectors

e Small effect that they would not have seen otherwise (10-3)

® High dead time while detectors read out
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A
e

e 1992 - 2007

e Crossing rate 10 MHz (96 ns) very challenging
e Dominated by beam-gas interactions

® First use of pipelined trigger logic —
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& | Pipelined trigger logic

e Data stored in detector front-end pipeline
e Pipelines deep enough for X BXs where X can be 100s

e Trigger analyses data and makes decision

e Decision used to signal readout or not

e Must give decision every BX to be dead time free
e Must have fixed latency (no iterative algorithms)

DATA TRIGGER DECISION
ﬁ

TIME
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% lTevatron and tracking triggers

e Bunch spacing 396 ns
e Not as challenging as other colliders

e Challenge is to trigger B physics at an acceptable rate

e Huge amount of work went into developing tracking
triggers

20 H“zs

L3 Track IP Significance

e Impact parameter Level 3 (software) trigger to select ' mackeround
events with long-lived particles Tt - sona |

e Developed at Imperial College &
e | HCb now use Boosted Decision Trees extensively

0 i 1 1 0.2 1 1 1 0-4 1 1 1 0.6 1 1 1 0.8 1 1 1 1 1 1
L3 IP Prob
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& | The LHC experiments

p o

/ TeV / TeV
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Typical trigger design

e [hree |levels

CALO MUON TRACKING

o | evel 1: hardware and firmware
» Cannot keep up with bunch crossing rate

» Pipelined and dead-timeless

(RODS). river o | evel 2: composite of hardware and

Readoul bulfers S Oftwa e
(RCBs)

» Can have hardware pre-processing
» Can be regional processing

Fullevent buffers ¢ | cvel 3: software

processor sub-farms
» Farms of PCs

» Full detector information

Dota receord ng

» Close to offline algorithms
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e FPGASs have been around In

trigger systems for a while \
e Latest large FPGAs give a huge , \/
amount of flexibility and are used in the LHC experiments

e Revolutionised trigger systems since the logic (algorithms) do not need to be
fixed when the board is produced

e Can change the algorithms running in hardware, in light of better detector
understanding, even physics discoveries

e [raditionally difficult to program, requiring low-level languages e.g. VHDL,
recently huge progress in high-level language translation
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% —Haraware algorithms

e Hardware Is well suited to simple questions

e Cut out simple high-rate backgrounds
» QCD at Tevatron and LHC

» Beam-gas at HERA

e Capabilities are limited
» Can extract objects like electrons, jets etc.

» Can match and correlate these objects

e High speed and dead-timeless
e More difficult to modity algorithms (though higher-level languages improve)
e Possible algorithms tied to detector geometry
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% Software triggers and algorithms

e Hardware not well suited to complex algorithms with data from ditferent
detectors

® Track and vertex finding for example
» Loop over hits and search
»|terative algorithms

e Software triggers are well suited to complex algorithms where full granularity
data from the whole detector is necessary

e Higher level triggers are farms of PCs
e Distributed systems can have 1000s of nodes to be controlled
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% The Large Hadron Collider

Proton

Parton
(quark, gluon)
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% | HC challenges: data rate
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0 L 10% cm2s'=10" mb' Hz
G, (PP) = 70 mb
— Event Rate = 7 x 10° Hz

e At=25ns=25x10° Hz'
— Events/25ns =7 x 2.5 =17.5

* Not all bunches full (2835/3564)
— Events/crossing = 23

e At design LHC luminosity we have 22 events superimposed on any discovery signal

e 109 events per second x typical event size of 1-2 Mbytes >> TByte/sec
e Enormous data rate. Need super-fast algorithms to select interesting events while suppressing less interesting events
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CMS

Higgs -> 4u

e \We want to select this type of event for example Higgs to 4 muons....
» which has this superimposed on it......
e Sophisticated algorithms necessary
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trigger challenges

Higgs -> 4u +30 MinBias

e \We want to select this type of event for example Higgs to 4 muons....
» which has this superimposed on it......
e Sophisticated algorithms necessary
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% | HC trigger challenges - pile-up

super— | In-;-out-of-t'lme
: Y pulses
: In-time : \ P
| ulse ) !
| Impose
T — amEEs 2000 J&H‘_i 4.--;;;i3:::::-

1 (26ns uritc) t(26n¢ uniis)

* |[n-time pile up: same crossing different interactions

e New events come every 25 nsec = 7.5 m separation

e QOut-of-time pile up: due to events from different crossings

e Need a to identity the bunch crossing that a given event comes from
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2. | LHC challenges: needle in a hays

e QCD cross sections are orders of magnitude larger
than electroweak or any exotic channels

e Fvent rates:
» Inelastic: 10° Hz

E1ub
» W—=Iv: 100 Hz =
» t-tbar:10 Hz g

» H (125 GeV): 0.1 Hz
» X (600 GeV): 0.01 Hz

= Need to select events at the 1:1011 |level

25 India CMS Lecture Series 2020

Fermilab SSC

CERlll l LH+C l

- Gjet
E‘t =0.25 TeV

UA1/2
(PP)
O (mz; =500 GeV)

agg g
o< CDF/DC

m =174 Ge
m =175 GeV top
top

OH 7
my = 100 GeV

Gz'
m_,= 1 TeV

o Higgs
my, = 500 GeV

| | | | |

0.001 0.01 0.1 1.0 10

vs TeV

10

Events/s for & 10¥ cm=2 s



% From the trigger design report

e High efficiency for hard scattering physics at the LHC

e Processes like

» top decays,

4%

e Need to efficient

» Sets scale for single

o For H—yy

v 41, W-W, SUSY...

y reconstruct decay products from intermediate W and Z bosons
epton triggers from W decay Pr>40 GeV

» Sets scale for di-photon trigger of Pt>20, 15 GeV

e Benchmark is that muon and isolated electron must have efficiency > 50% for W

decays
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% From the trigger design report

e Requirements

» Leptons and jets |n|<2.5 with high efficiency above some pr threshold

» Single lepton triggers with high efficiency (>95%) [n|<2.5 Pt>40 GeV
» Di-lepton triggers with high efficiency (>95%) [n|<2.5 Pr>20, 15 GeV
» Di-photons similar to di-leptons

» Jets continuous over [n|<5 for single and multi-jet topologies. High efficiency required for high-
-7 jets

» Missing Er with threshold around 100 GeV
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What drives the rate for each type of trigger?

® Electrons and photons ¢ Jets
» High-Et 19 from jet fragmentation and direct » Mis-measurement of low Er QCD jets
photon processes
e [au
e Muons . .
» Narrow QCD |ets fake hadronic tau decays

» Mis-measurement of low Pt muons

e Missing Er

» All sorts of mis-measurement, machine
backgrounds etc.

» Hadronic decays

» Punch through from jets
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% _evel-1 trigger system overvie

4 a 4 ™
. HO HCAL
. . DT Hits . HCAL HF ECAL
e Key concepts u [] [] []
. J \_ v,
( R

L

Layer 1
Calorimeter
Trigger

» Calorimeter system — remove boundaries by
streaming data from single event into one FPGA

l
» Muon system — use redundancy of three muon Caer]
detector systems early to make a high resolution - —
muon trigger e - [ " ]
. . Vo
» Global trigger — expandable to many possible [Glmgger]
conditions and more sophisticated gquantities, to

give a rich physics menu
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System implementation

e Organised in two layers,
implementing a time-multiplexed
architecture

Each card spans 8 out of 72 towers in ¢ and % of n.

A 4
4

cards, each receiving 60 links at between 5.0 Gb/s & 6.4 Gb/s of Calorimeter data

Layer 1 cards transmit
48 links @ 10G
TPG
72 input links per
Layer-2 node
Regional Multiplexer
calo stage
Processors
Global
calo stage
‘ MP7 \ Simple to upgrade from 16 bit e
towersto 24 bit towersor Global
‘ ide extra logic resources. trigger
Calorimeter T"gger Ub]ECtS Fully pipelined trigger Time-Multiplexed Trigger

EG, Taus, Jets, Sums - L1 Latency = 3.8 ps
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C
% Processors (examples)

_ _ Backplane T
CTP7 Calorimeter Trigger Processor Fihernet, PClex Xilinx Virtex 7 )
. TTC, DAQ, SATA/SAS 690T sUpporting
Layer 1 - Pre-processing 11x1.86bps LVDS links in

« Aggregates & time-multiplexes calorimeter data

- DAQ readout for monitoring

Optical links
27Rx/12Tx 10 Gh/s Avago MiniPOD

Optical links o

40Rx/36 _Tx 10 Gb/s VIRTEX-7 Backplane

Avago MicroPod P .

Pluggable CXP 8Rx/8Tx Rack fabric
4Rx/4Tx MCH1
DAQ Rx/Tx AMC13 in MCH2
GbE Tx/Rx MCH1 to AMC13

|

AOEONLT | T
.| walinor

ZYNQ SoC FPGA Dual ARM Cortex-A9 CPU +
Linux. Communication & support functions
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11x1.8Ghps LVDS links out

Atmel 32-bit MMC

PSDHC interface firmware upload
2x144Mb 530MHz QDR 11+ SRAM

Optical links
T2Rx/72Tx

MP7 Master Processor
Layer 2 - Trigger Algorithms

« Hosts most of the algorithms

- DAQ readout for monitoring

~Avago-miniPOD 6Rx/6Tx
10.3 Gh/s each, 740 Ghps 1/0



% System Integration

A
)
= b )
e - L —
oo S I\
,
:

\.j’ ﬁ.ﬁ H.‘ N'P'?Er‘!-'[—. r' t | ‘j‘,;:

Layer 1

3 Vadatech VT894 Crate, 18 CTP7 boards
6 bits ECAL+HCAL energy + veto &
feature to Layer 2
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810 Gh/s
links

— —_— —_—— R — -

HHHHHHHHHHH

Global Trigger

receives 12 electron/photon + 12 Tau iso/non-iso
candidates + 12 Jets and sums.

Molex Enclosure
Flexplane (commercial)

Time multiplexing routed
through 72 to 72 12-fibre
MPQO connectors




% Level-1 Irigger latency

e Detector data stored in front-end pipelines Global Trigger 1 Local level-1 trigger
» Pipelines deep enough for 128 bunch crossings (~3us) l ,,,,,,,,,,,,,,, e Prle 8. 7, 1, |
e R

:

l-
* [rigger decision derived from trigger primitives gsg

generated on the detector "

e [rigger systems search for isolated e, v, U, jets
and compute the transverse and missing
energy of the event

Front-End Digitizer| _ _J Trigger
Pipeline delay Primitive
(=3 ps) Generator

e Event selection algorithms run on the global
triggers

» Must give a trigger decision every 25ns. Accept/Reject LV-1
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% Muon track finder algorithms

e Muon track finding

»  Segment into Barrel, Overlap, and Endcap regional
DroCcessors

 Complementary detector strengths e.g. RPC timing

* Improve robustness in the case of dead channels/
chambers and cracks

» Pattern based track finding in endcap and overlap
(with separate MVA LUT pt assignment in endcap)

EMT

» Road search extrapolation track finding in barrel

»  Global muon trigger takes muon tracks from
regional finders, sorts by prt and quality and cancels
duplicates

» Input from calorimeter trigger to apply isolation to
muon candidates
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C .
% Muon trigger performance resu

T(13 TeV)

L1 efficiency

o
o

~o~H

CMS Preliminary 2016 data 3.1 fb
I I I I | I I I I | I I I I | I I I I

0.4 e o - :
 4p=25Gev

—h
|
|

Y

 +pt'=18GeV |
-+-p5--_>?-2-2---ee-v

7 E S A —

-

L1 efficiency

T(13 TeV)

0.6—

0.4—.

—
|

CMS Preliminary 2016 data 9.5 fb
I I I I | I I I I | I I I I | I I I I

osft

100

200

300

400

L1 efficiency

—

0.8

0.6

0.4

0.2

CMS Preliminary 2016 data 9.5 fb' (13 TeV)

-25 -2 -15 -1-05 0 05 1 156 2 25

»Trigger efficiency for a single muon with pr > 18, 22 and 25 GeV vs oftline muon pt and n

» Using tag and probe method on a dataset of Z—pp events
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% Muon track finder algorithms 1or

T T
O ™~ en v

o~

— Muon
— Dectron
— Charged Hackon (e.g. Pon)
w = =« Neutral Hadron (e.g Newtron)

o Kalman filter algorithm will be used for = ol
barrel muons &

»  Commissioned in late 2018 ready for Run 3 !

»  (Gives two measurements of muon pr:

* Vertex constrained (traditional) , T
. . . N B |
* Unconstrained — suitable for displaced muons e.g. S R A B +
. . . 61 : : v ople. f ;
from long-lived exotic particles — T T s
L P,>1(€ GeV ,,:t* {
ek
-+ Displaced KBMTF +1_1:p :
R L R
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e/y finder algorithm

cnlnsl Pll‘eliminallryl 291 q, Vs=13 TeV, 8.2 b

Dynamic clustering Cluster building F O R A AR
7 5L | ]
Improved energy containment - e Worar  Bae s

Showing electrons, photon conversions
Minimise effect of pile-up I
Improved energy resolution

Eff. RMS/<
o

0.06|-

0.04f-

Cluster shape veto

0.021— | —

O_I | | | | | | | | | | | | I:l | | | | | | | |

Discriminate using cluster shape and EM - I I

energy fraction between efy and jets N A

. First neighbours

Calibration . Second neighbours e ot et a8 e
ely cluster energy calibrated as fn. of Er, - o
n and cluster shape Cluster shapes |

jet like ‘
Energy weighted position N
Potential use in correlating objects e.qg. ey like - )
invariant mass H e I . o .

a & Position comparisons to offline
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ely trigger performance results

» Trigger efficiency for a single efy
with ET > 40 GeV vs offline ET Create isolation annuli (removing footprint) for ECAL and

HCAL around cluster

|solation energy requirement fn. of PU and n

» Using tag and probe method on a
dataset of Z—see events

CMS Preliminary 2016, {s=13 TeV, 8.2 fb™

1—---; --------------- e e e e SR p—— i — . CMS Preliminary 2016, /s=13 TeV, 8.2 fb™
- - Isolation

n
— HCAL

*

Efficiency

Efficiency
o
S

L1 Trigger EG40
. w/o |solat|on '

ECAL B L1 TrlggerlsoEG24 _

O
(@)
|!|
|

o
~
| | | |
|

e PBarrel

5 Endeaps - g . e Barrel

T = 0 2__ ____________ _ i, 0 Endcaps .

10 20 30 40 50 60 70 80 90 100 N PTLTVOUR IO FYOPL VUL FOORY DL DO
E. [GeV] B 1soiation region 10 20 30 40 50 60 70 80 90 100

E. [GeV]
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T finder algorithm

Clustering, shape and position
Very similar to e/y — optimised for T

Merge neighbouring clusters (~15% of clusters)
Recover multi-prong T decays

Calibration

T cluster energy calibrated as fn. of Er, n, merging and
EM fraction

Very similar to e/y — optimised for T including merging
as input — two working points

40 India CMS Lecture Series 2020

12.9 b (13 TeV)
T T ]

CMS

- oreliminary.. ]
0'425016 g .+ —e— Barrel ]

0.85 - Enoaps

smmass

o
w
|

0,25 [ _-
. —— 1

o
\V)

045 [ R = =

e :

2 i i R S B S I 1
20 30 40 50 60 70 100 - 200
p$ ine [G eV-

—nergy comparison to oftline

-1
12.9 o™ (13 TeV) . e 129fb (13TeV)

T anes! T T T ] >S5 |

'cMS , S5 [cus

0.16 ;pf:e[irni nary. ) . preil ninary
L 2016

EEEEEEEEEEEEEEE

*%“\i\
—"‘é&/+
bt

it

}
oot

L1_' offline' L1_ offine



T trigger performance results

>

@)

(-

Q0

S - 2016
HLE 5
—

-

T
O
7

r

- preliminary
- 2016 |

0.8

L1 Efficiency

w g

-y -y

- T ..

¢ Inclusive, E-'= 28 GeV | |
¢ Inclusive, E?z 30 GeV . . 0.2 o _______________ ¢ lIsolated, Egz 30 GeV .
¢ Inclusive, E?z 32 GeV | : o Isolated, E?z 32 GeV

0.2

20 40 60 80 100 20 40 60 80 100
p_cln_ffline [GGV] p_cln_ffline [GGV]

»Trigger efficiency for a single T with Er > 28, 30 and 32 GeV vs offline T pr
» Using tag and probe method on a dataset of Z—pT events
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Jet finder algorithm

Input granularity

Access to higher granularity inputs than Run |

Sliding window jet algorithm

14 (n) x18 (¢) 56 (n) x 72 (9)

Search for seed energy above threshold
Apply veto mask to remove duplicates
Sum 9x9 trigger towers to approximate R=0.4 used offline PUS areas

EEEEEEEEE
: : EEEEEEEEE

Pile-up subtraction —

Consider four areas around jet window === S ===

Subtract sum of energy in lowest three from jet energy === ===
11 11
11 11
11 11
11

Calibration EEEEEEEEE

. . . . EEEEEEEEE
Correct jet energies as a function of jet Er and n

semmmmmmm VElO mask
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% Jet trigger performance result

»  Match Level-1 Trigger jets to oftline (anti-ki R = 0.4) jets using A
»  Compare energies and calculate efficiencies as a function of of

CMS Preliminary 2016 Data 3.1fb™" (13 TeV) CMS Preliminary 2016 Data 3. 1fb (13 TeV)

> - — I I I I | I I I I I I I I |
% CDU 0.09 EOfﬂ e > 30 GeV_
- fflin -
S 0.08 hr]° ¢l < 3.0 :
L 0.07F +osPU<14—§
0.062— +14sPU<22_f

- -

0.05F

C L. ' : : 0.04F
04 « . . Inl < 3.0 B -
-l : : L1 JetE; >36 - 0.03F
02 & ¢ : o L1 JetE;>68 - 0.02F
. ° ° ° ® e L1 Jet E > 128 —

0.01F

:-" i: / e L1 JetE, > 200° 01
0 ||||||| I T T T T T ) A O R O

- 22 < PU

050 "T00 150 200 250 300 350 400 M Y

Offline Jet E (GeV) (L1 Jet E Offllne Jet E )/Offline Jet ET

»  Sharp efficiency turn-on with well calibrated
» Insensitive to pile-up
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—T scale

Efficiency

line jet quantities

—

0.8

0.6

0.4

0.2

CMS Preliminary 2016 Data

R < 0.25 In single muon data

3.1fb7 (13 TeV)

ml < 3.0
L1 Jet E; > 128
<+ 0=<PU<14 -
—+ 14 < PU<22_
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C .
% Energy sum trigger performance

» Use jets to calculate scalar sum Ht = 2 Eyj for Erj > 30 GeV and |n| < 3 using single muon data

» Vector sum of trigger towers with |n| < 3 to form Eymiss

CMS Preliminary 2016 Data 3.1fb" (13 TeV) CMS Preliminary 2016 Data 3.1fb" (13 TeV)

> | | | o | > | | | | | v | | |
R - R | EEETTETERE
) W ' - ) -~ ?’ ?':—"’;.-""--’
"'ci) - & & e S : ‘g B 3 .'. o.. .°... 0.'... -
m o8~ S0 B L 08 S -
o6 S50 - 0.6 A -
I « L1HTT>120 - 0al Do o0 ) < LIMET>40 -
A . ~ L1HTT>160 - T $0 s 0 & o LIMET>60 -
S ~+ L1 HTT >200 - - S - . 0 < LIMET>80 -
0.2 O e L1 HTT > 240 | 0.2 P * L1 MET>100 _
i =-’ :" : ;-‘ ' L1 HTT>280 - L1 MET> 120
T N R R A T R R R R R R R R A RN I B R B A R A B R I B
O0 100 200 300 400 500 600 O0 20 40 60 80 100 120 140 160 180 200
Offline Total H, (GeV) Offline ET™ (GeV)

»  Favourites with SUSY and exotics searches
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% _evel-1 lrigger menu

e (Global trigger provides selection based on

Jets + Energy sums :l 1%

2.6% Fraction of

object algorithms Energy sus

i + Jets or Energy sums

3.27% 100 kHz rate

ptely

3.3%

e/v + Jets or Energy sums

4.6%

T + p or e/~ or Jets or Energy sums

5.3%

» - Simple algorithms like single lepton, jet etc. Malti ¢/

6.4%

Single p

9.8%

Single or Multi Jets

11.5%

Single or Multi 7

12.7%

» Also complex algorithms including invariant Mult 4

14.8%

24.8%

masses, topology conditions like AR, overlap S and
removal ...

0.2
©0.18
0.16

» U 0 to 512 4| gor ithms su DPO rted o1 42

tutorials on tools and development ool |-
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CMS 42107 (13 TeV)

008+t

- Offline muons
—— L1 not extrapolated to vertex
— . —— L1 extrapolated to vertex -

By e

00246810121416180

m,, [GeV]



C : .
% Example: iInvariant mass

»  Example VBF Higgs to di-tau decays:

Two low ErT jets, separated by large n gap
Central high pT 1-lepton pair from Higgs decay
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CMS Preliminary (13 TeV)
E = B Only VBF selection
11000 [ Only DiTau selection
S I I DiTau AND VBF
L% 800 2016 Simulation
i VBF H — 1t
Di-jet selection with jet
Er > 35 GeV & mjj > 620 GeV
%O 30 40 50 60 70 80 9§f|-n1eoosutjf1[?; e\1/]20
Single jet Er> 110 GeV i
- CMS Preliminary (13 TeV)
i ) ) o [ I Only VBF selection
Di-T selection with Inl < 2.1 o B Only DiTau selection
B n I DiTau AND VBF
& PT > 32 GeV €350~
= 300 2016 Simulation
VBF H — 1t
Use of invariant mass allowed 250

the jet threshold to be kept low 200

150

Combination of leptonic and
hadronic selections adds ~60%
efficiency for the Higgs signal

100

50

A?OO 600 800 1000 1200 1400 1600 1800 2000
offline m, [GeV]



% | CMS High Level Trigger

e [raditional L2 and L3 merged into
High Level Trigger (HLT)

Event data partitioned
into about 500 separated
memor y units

100kHz input rate from L1 trigger

~30 000 CPU cores (Intel Haswell,
Broadwell and Skylake)

-ew hundred ms average per event

'.i.'.’.'.i.'.i.'.i'.i.'.’.'.F
Builder Networks
-====;==qh

s ol e

= 3
w—_ i
N
— e —

Farm of processors

ONE event, ONE processor
- High latency (larger buffers)
- Simpler /O

- Sequential programming

L
I .
— e —
< - —— .
- .
-
.
-. - :
.. .

Multi-threaded version of CMS software
used, where events share non-event
data — 20% improvement in
performance
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e Similarly to Level-1 Trigger, high-level
trigger selects events based on CMS Preliminary (13 TeV, 2018, 2.0x10*' cm~>s~!)

reconstructed objects o
SUSY
» Reconstruction algorithms similar to offline (full Bs;g
detector granularity) same code base but Top
simplified in some cases and approx. calibrations Mo
B Physics
Electron-Photon
» Key metric is CPU time — algorithms that take a Jot-MET
ong time (e.qg. particle tlow) must be run on Tau b
subset of iInput events B Tagging ik BN Total Rate
Tracking B Shared Rate
Calibrationh— — T
»  Prepared in conjunction with physics groups with 0 100 200 300 400 500 60O 700 800
tutorials on tools and development el
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% High-level trigger tor Run 3

e Proposed plan for Run 3 is to equip the HLT farm with GPUs

»Trial for HL-LHC upgrade where accepted that some sort of acceleration necessary
» 20% fewer CPUs so need at least 20% improvement in performance to break even

»  (Goal: Offload as much as possible part of HLT reconstruction to GPU's.

—CAL, HCAL and pixel track reconstruction can now run on GPU'’s, decreasing the time spent
per event reconstruction by ~25%

CPU-only, 2018 Menu Latest Run-3 CPU+GPU, 2018 Menu Latest Run-3
configuration, multi-threaded

»  Opens doors to other options like

25% decrease
|

wider use of Machine Learning,

: : Using GPUs
improved scouting ...
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» Motivation and some important concepts

» Historical overview highlighting how challenges have driven development in the past

» Case study: current CMS trigger

» Case study: CMS trigger upgrade for HL-LHC

» Practical advice
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% Why upgrade the LHC?

e New Physics at the weak-scale could still be hiding in the difficult corners of
phase space or in small deviations of the SM predictions
» Direct searches targeting hard to identify signatures

 Compressed spectra, small couplings or heavy off-shells mediators
* Rare events with soft objects or long lived objects in the final state

» Indirect searches through small deviations in SM properties
« Less well known SM properties: Higgs boson couplings need 6(1%) on couplings

e Require the high statistical power dataset to have at least the same physics
acceptance as currently I1.e. same trigger thresholds

e Require to open a door to the uncharted land: several blind spots in current
searches are due to trigger limitations. New trigger design to cover extended
forward regions, full hadronic final states, LLP, soft leptons, etc...
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Run 1 ©(1000)

Upgrade factor 4-10 better measurements than today
Millions of events in all production modes

Iggs bosons at L

Access to rare decays of Higgs
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e Measurements of Higgs will play a big role in future

e Upgraded LHC is a Higgs factory

C

Total Higgs
Bosons

LHC Run 1 660k
HL-LHC, 3000 fb-1 170M
VBF (all decays) 13M
ttH (all decays) 1.8M
H — ¥ 390k
H— Zy 230k
H— pu 37k
H—-J/Wy 400
HH (all) 121K
HH - WWWW 9200
HH — bbyy 320
HH — ¥¥¥¥ 1




e Measurements of Higgs couplings

»  Answering the question, /s this the SM Higgs?
»  Express the production and decay of the Higgs in terms of deviation from SM coupling

Production Decay
g 2200 - b,T W.Z
Kb, Kw,z
bt H ——— ‘ﬁ:i

0 2000 b, W.,Z
9 VW~ Y

W.,Z Kw,b,t

H-—- W,b,t

W,Z

9 AW Y

» Requires great performance across the board
* Electrons, muons, taus, forward jets, b-tagging, trigger, MET....
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e Scaling of signal and background yields as:

* Scenariol - systematic uncertainties remain the same: conservative

e Scenario 2 - theoretical uncertainties scaled by Y2: expt. systematic uncertainties scaled by 1/4/L

CMS Projection (Prelim.) CMS Projection (Prelim.)
| | I | | | | | | | | | | [ [ | [ I | | | | | | | | | | | | | | | | | | | | | |
Expected uncertainties on 1 300fb"at fs =14 TeV Scenario 1 Expected uncertainties on 3000 fb"at fs=14 TeV Scenario 1
Higgs boson couplings 1 300fb"at fs =14 TeV Scenario 2 Higgs boson couplings — 3000 fb™at fs =14 TeV Scenario 2
K, Ky
Ky Ky
Kq Kg
Ky, Ky
K, Ky
K, K:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
expected uncertainty expected uncertainty

* Example beyond the Standard Model theories predict up to ~5% deviation
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Future pnhysics: Da

e \What can the LHC contribute”

»  Complementary to direct detection

Visible matter

(4.9%) experiments and observations
Dark energy
(68.3%)
Collider
production

X g
/ Dark matter -5
(26.8%) M Sl
=0
Q1D
T

X q

Freeze-out,

indirect detection
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% ~uture pnysics: Dark viatter

e How do you observe something invisible?

»  Monojet (and other) events

» Large gains with 300 fb-1 to 3000 flbo-

»  Requires excellent performance for jets and missing energy
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e Broad physics programme :5;? [ cus

» Precision SM (including Higgs) measurements 10°

» Searches for new physics 10° oo |
S el & Toae 3"°"'-“?’-"’¢“:'“’;
e Complementary to other (potential) colliders s o e
e Highlighted key areas for detector performance o
T e

e Bottom line: will need to maintain current high level of detector performance
and improve in some areas, for example long-lived particles
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% | HC: Running conditions

58

4

LHC

‘ LARGE HADRON COLLIDER

HL-LHC

LS

13 TeV

LS2
13-14 TeV

splice consolidation
button collimators
R2E project

7 TeV 8 TeV

Diodes Consolidation

cryolimit LIU Installation

interaction

regions 11 T dipole coll.
Civil Eng. P1-P5

ATLAS - CMS radiation
experiment upgrade phase 1 damage
beam pipes nominal Lumi 2 x nominal Lumi ALICE - LHCb 2 x nominal Lumi

75% nominal Lumi | /"’ upgrade
HL-LHC TECHNICAL EQUIPMENT:

DESIGN STUDY

PROTOTYPES

CONSTRUCTION

LS3

I 14 TeV

] energy

8 HL-LHC 5 to 7.5 x nominal Lumi

1 installation 1

I

iz
i

I ATLAS-CMS

i HL upgrade

I

0

i

i integrated EIVIVR{2Y

i RS 4000 (ultimate)
i

i

| INSTALLATION & COMM.HH

PHYSICS

Nominal ; 5x1034 cm=2 s-1 140
Ultimate: 7.5x1034 cm-2 s-1 200
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U, Int Lumi = 3000 fb-1

U, Int Lumi = 4000 fb-1



% Detector challenges

® P| ‘eu p Simulated Event Display.at/ 140 PU {102 Vertices) P Rates

»  Detector performance
degraded (e.g. pattern
recognition)

» Irigger rates increase
with Instantaneous
luminosity anad

»  Oftline reconstruction performance degrades
complexity with pileup (e.qg.
Isolation)

Dose, 3000 b

800 . | . . —— 1e+07 :
L i, e i »  Current L1 trigger 4
»  High fluencies and high 500 S | | iy S

'g 200 ;,. 10000 E’

doses for trackers and = ; 1000 & _

endcap calorimeters 200 100 Run1 30 Hz

100 10
»  Degraded performance 0 1 Run 2 200 Hz
0 200 400 600 800 1000 1200 1400 Run 3 400'600 HZ
CMS FLUKA geometry v.3.7.0.0 Z [cm]
HL-LHC 1KHz
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Barrel Calorimeter
* New BE/FE electronics

« ECAL: lower temperature
HCAL: New Backend electronics

Muon System
* New DT/CSC BE/FE electronics

« GEM/RPC coverage in 1.5<|n|<2.4
¢ Muon Tagging in 2.4 <|n|<2.8

HGCAL
* High-granularity calorimeter
« Radiation-tolerant scintillator
3D capability and timing

Tracker

 Radiation tolerant, high
granularity, low material
budget

 Coverage up to In|=3.8

* Track Finder @ L1 (|n]|<2.4)

Trigger and DAQ
* Track-trigger at L1
L1 rate ~ 750kHz
 HLT output ~ 7.5kHz

MIP TIMING DETECTOR
Coverage eta < 3. Barrel:

LYSO:CE crystals SiPM.
EndCap: Silicon Sensors
(LGAP). Timing ~ 30-40ps
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% lTracker upgrade

e Quter tracker

* Pr-modules = doublet sensors with common electronics to correlate hits
and form stubs for trigger

* Distance between sensors give track pr lower cut

AR Pass * Fail
)

PRSP IT NSRS ETETIEI OSSR RS SRR RSt et Et SRR S 9900000 e e e e R e e 0w e
SSSSSSSBESESSSALEBSESSESESSEEECEEASRESSERSEESESEREEEEEESES . APECEEEEEE BB EEE 000

Upper sensor S
1-2 mm &
L
o
>
~ a —©— 1mm Layer Separation
/ ¢ 200 pm S —&— 2mm Layer Separation
—| |- ' —©— 3mm Layer Separation
~100 um Lower sensor ~< 4mm Layer Separation
H | —©— 5mm Layer Separation
) (I) | |
15 20

* Allows control of trigger rates
 FPGA based track finding proven
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Rate (kHz)

Efficiency

CMS Phase-2 simulation, < PU > = 140

AU U VR UL IO OO VL N SO U SN UV S . NN

s veenneemmnsmnsannne . .......... + .............. LTMUOHS(quaT>4)]T||<1'| ........................ —

10 20 30
p, threshold (GeV)

PU 140, 14TeV

1_. CMS Phasell..S.l.m.uI.atl.on ....... T — _— .................
0.8
06
0.4 B L1M.u (Run 1 éonﬁguraﬁon+ME.1a unganéed) )
R e 0 —e—0 <[n[<1.1 Q24
B + —=— 1.1<|n <24(Q=4)
0.2 e T + ...... L1TrkMu (Phasell: muon hits in > 2 stations)
B T e =0 < nf<
IS =R L 8- 11<n <24
OmwlllllllllllllllllllllllIIIIll

Simulated muon P, [GeV]



% Endcap calorimeter upgrad

e Current endcap calorimetry will not
remain performant after LS3

»  Combination of radiation damage and high
pile up conditions

,,,,,,,
» ‘B

I

= i'm;\
Qe

O\ : 51— ak e ‘ “ S
AL \ \ TS
N Ne———=- cecil (MULTTUTTTLRL UL
-y N Givlai Siain Sialéin Sinldin Sislais | ' s

e Plan to replace by integrated high- W7o | i
granu lar] ’[y calorimeter % o /a4 (i A
AN (- We” Vi Back thermal screen
= ceee 1HTREG \ °

»  Sampling calorimeter with silicon sensors,
optimised for high pile up

»  High granularity readout (~1 cm2) and
precision timing capabillity (<50ps)
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% Endcap calorimeter upgrade

i

e High Granularity Calorimeter with 4D (space-time)
shower measurement S i

~

- é:: ='..-\ ‘
: & "i." \\\\

F .|‘u~uu‘a.~i-.~:

e |||||||||‘||‘| (111 S

ansk B H g=2[==2(B-:2

MEQ frant EI.

/A

FEFEIERERERIER

»  Electromagnetic section (26 X0, 1.5A): 28 layers of Silicon-W/Cu absorber ISR

»  Front Hadronic section (3.5 A): 12 layers of Silicon/Brass or Stainless Steel E

»  Back Hadronic Calo. (BH) - radiation tol. - granularity I

» BH C§5 ?\t)) 12 layers of Scintillator/Brass or Stainless Steel (2 depth --------------
‘eadou , S

N CMS Experiment at LHC, CERN
(Ay Data recorded: Thu Jan 101:00:00 1970 CEST e
- \ Run/Event: 1/101
= Lumi section: 2

Re cted jet using current

] constru . ’e
. CMSPandora algorithms ‘s PFCandidale 735
p = ku‘
J W * pt=9.14
L 3 ) eta=2.071
. phi = 1.045
L e . = ndidate 211,

" . = ' s pdg = -211
R A pt=18.22
. ag P eta =2.120

»  Level-1 Trigger, reconstructions algorithms, analogue and digital
electronics...
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% CMS trigger upgrade

Retain two-level triggering approach: L1 & HLT

e | evel-1 (hardware) system
» Increase bandwidth 100 kHz — 750 kHz
» Increase latency 3.8 ys = 12.5 us

» Include high-granularity detector information and tracker information (first time!)
» Add dedicated scouting system @ 40 MHz

o High-Level (software) Trigger
»  Keep rejection (100:1) 1 kHz = 7.5 kHz (18xCPU)
»  Data throughput 2.5 GB/s = 61 GB/s (25x)
» - Optimise reconstruction software: balance efficiency/ rate and event size/timing

» - Strategy: benefit from modern processor tech (heterogenous architecture CPU/GPU/FPGA...)
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% New Level-1 Irigger system

Calorimeter trigger Muon trigger Track trigger
I

Detector Backend systems
BC

BCT

RPC | csc ! gem | iRPC TF TP
'-‘h
Barrel OMTF EMTF Local

Layer-1 I

BMTF
Global Muon Trigger GIOTEE;;?CK Global

Particle Flow Layer 1

———— PE

Global Calorimeter
Trigger

External Triggers

Particle Flow Layer 2

Correlator Trigger

Global Trigger GT

Phase-2 trigger project

»  Provides robust independent triggers for calorimeter, muon and tracking systems
separately, and a Farticle Flow trigger, which combines all information
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% 40 MRz scouting system

! :-:W

I/O nodes
Local processing
Transient short

term storage

sTS

Distributed (global) processing
Medium-term storage (xDB)

HPC Interconnect(s)

Query
Services

sLS(mu)

sGS

Attached
storage

sDS

»  Provide real-time diagnostics, monitoring, testing new algorithms and developing menus,
selecting an reconstructing physics objects without rate limitation = physics potential too!
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C
% Processors (examples

APXx consortium

67

Powered by a VU9P FPGA with
2.5M logic cells

100 bidirectional links up to 28 Gbps

* 76 to the front directly connected to mid-
board optics

e 24 to the rear transmission module via
high density connector

- Rear transmission module supports
interfaces for legacy links and
generic serial I/O
Control, management, and
monitoring by an embedded linux
mezzanine (ELM) on-board

* Featuring a ZYNQ system-on-chip with
dual core ARM processor and FPGA
logic

Large 128GB memory mezzanine
for look-up table applications

Shelf management via custom IPMI
mezzanine running real time OS
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ELM

IPMC

Memory
LUT

Carrier board supporting two sites
hosting daughter cards

Up to 144 bidirectional links (extendable
to 192) through mid-board optics
connected to both sites
e Upto72(96) links per FPGA that can run
at 16 or 28 Gbps
Daughter cards with FPGAs mount on
the carrier through ultra-dense low
profile interposer
* Provides the flexibility to design daughter
cards with any combination of FPGAs that
fit the ATCA shelf power budget
Control & Monitoring performed via a
commercial COM express mezzanine
featuring a standard x86 processor
 That communicates with daughter cards
and service Artix 7 FPGA
IPMI management through CERN IPMC
mezzanine

Serenity collaboration

=l ) =

b=~ =3
. rmr “aED Gl e
15 50 @l
o LT Sy e

Daughter card
with FPGA



% _evel-1 Irigger algorithms: m

e Standalone muons

» - Similar to current trigger conceptually

* Kalman tilter in barrel
* Naive Bayes Classitier in overlap

NN, including new GEM and iIRPC chambers in endca

e [rack matched muons
»  Match with standalone muon
Use track pr measurement for sharper efficiency

»  Match with muon stubs
Recover some efficiency in muon chamber “gaps”
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% _evel-1 Trigger algorithms: e/y

e Standalone

»  Barrel
* Individual ECAL crystals available for first time!

»  Endcap
* 3D clusters from high-granularity calorimeter

e [rack matched
» Match track to cluster
»  Optimised elliptical matching
» Tracks can also be used for isolation
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% Level-1 Irigger algorithms: Par

e Pl reconstruction aim at reconstruct and identity all particles in an event using
all sub-detector information

HCAL . H L
Clusters : '- '

neutral : Oé‘/
hadron | .’4 (&)

U £ &  photon
charged
hadrons

--------------------------------------------------

» Implementable for the first time at L1 thanks to:
» Efficient reconstruction of charged particles in the tracker

* Fine granularity calorimetry to resolve the contributions from
neighbouring particles

CT Layerl

e PF candidates are then filtered with the | o
glulsters

PUPPI algorithm BN\ Linking
» Uses vertex to define a particle weight -i.l

»  Basically a probabillity of being prompt

1/6th of CMS on 1
VU9P FPGA
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% Particle flow demonstrator

e Most ambitious aspect of the upgrade design
» Important to demonstrate it can be iImplemented

» Resource utilisation and latency fits within the requirements proving that complicated
algorithms such as Particle Flow are possible in CMS Phase-2 Trigger

FF 33%
LUT 45%
BRAM 40%
UltraRAM 25%
DSP 15%
Latency (Ms) 0.7

PF+Puppi - Regionizer - Infrastructure
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% Level-1 Irigger algorithms: Jets

e Standalone

»  Calorimeter only jets/M
* Simple and robust at hig

* Similar algorithm to current trigger

Combined efficiency

N ET

» Track jets/M

* Using only charged tracks
* Robust against pileup

e Combined

» PUPPI jets/M

* Sophisticated algorithm removing pileup and
optimally using different detector inputs
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% _evel-1 Irigger algorithms: T

e NN PUPPI 1 algorithm

nput: iteratively seed from highest pr charged
from each seed take all PUPPI candidates within A

D of 10 highest pt particles in cone input to dense NN: different

oT, Anseed, Apseed, particle |
working points from NN output

»  Other (simple) algorithms can

recover efficiency in plateaux
or provide robustness
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% | evel-1 menu

Offline Rate Additional Objects Offline Rate Additional Objects
L1 Trigger seeds Threshold(s) (PU) = 200 Requirement(s) plateau L1 Trigger seeds Threshold(s) (PU) =200 Requirement(s) plateau
at 90% or 95% (50%) efficiency at 90% or 95% (50%) efficiency
[GeV ] [kHz] [cm, GeV] [%] [GeV ] [kHz] [cm, GeV] [%]
Single/Double/Triple Lepton (electron, muon) seeds Cross Hadronic-Lepton seeds
Single TkMuon 727 12 7] <24 95 TkMuon-PuppiHr 6,320(250) 4 | <24,Az<1 95,100
Double TkMuon 15,7 1 n] <24,Az <1 95 TkMuon-DoublePuppiet 12,40,40 10 7] <24, AR;, <04, 95,100
Triple TkMuon 53,3 16 n| <24,Az <1 95 Anjj <1.6,Az <1
Single TkElectron 36 24 7] <24 93 TkMuon-PuppiJet- 3,100,120(55) 14 ln| < 1.5, |y| <24, 95,100,
Single TkIsoElectron 28 28 Iyl <24 93 PuppiEy™* Az <1 100
TkIsoElectron-StaEG 22,12 64 In| <24 93,99 Doub.leTlgMuon-PuppiIet- 3,3,60,130(64) 4 | <24,Az<1 95,100,
Double TkElectron 25,12 4 | <24 93 PuppiEy™ 100
Single StaEG 51 25 | <24 99 DoubleTkMuon-PuppiHy 3,3,300(231) 2 | <24,Az<1 95,100
Double StaEG 37,24 5 I”l <24 99 DoubleTkElectron-P upleT 10,10,400(328) 0.9 |77| <24,Az<1 93,100
Photon seeds TklIsoElectron-PuppiHy 26,190(124) 22 n] <24,Az<1 93,100
Single TkIsoPhoton 36 13 <24 97 TkElectron-Puppi]et 28,40 34 7| <21, |y| <24, 93,100
Double TkIsoPhoton 22,12 50 | <24 97 ak>0382<1
’ 1 : PuppiTau-PuppiEF"* 55(38),190(118) 4 | <21 90,100
Taus seeds o VBE seeds
Single CaloTau 150(119) 21 <21 99 . -
Dogble CaloTau 90,90(69,69) 25 7] < 3.1, AR > 0.5 99 D"“ble. Puppijets 160,35 40 7| <'5,mj; > 620 100
Double PuppiTau 52,52(36,36) 7 7| <21,AR > 05 90 B-physics seeds
- - Double TkMuon 2,2 12 7| <15,AR < 14, 95
Hadronic seeds (jets,Hr) glq2 <0,Az <1
Single PuppiJet 180 70 Il <24 100 Double TkMuon 44 21 [ <24, AR < 1.2 95
Doub.le PuppiJet 112,112 71 . In| <2.4,An <16 100 glxq2 < 0,0z < 1
PuppiHr , 450(377) 11 jets: |7 <24,pr >30 | 100 Double TkMuon 454 10 ] <20,7<m,, <18,| 9
QuadPuppi]ets-PuppiHy 70,55,40,40,400(328) 9 jets: |y| < 2.4, pr > 30 | 100,100 glxq2 < 0,Az <1
ET™ seeds Triple TkMuon 53,2 7 0 < Mysy3g142<0 < 9 95
PuppiEF"* 200(128) 18 100 Il <24,Az< 1
Cross Lepton seeds Triple TkMuon 53,2.5 6 5 < Mysu25,q1+q2<0 < 17 0
TkMuon-TkIsoElectron 7,20 2 7| <24,Az <1 95, 93 In| <24,Az <1
TkMuon-TkElectron 7,23 3 | <24,Az<1 95,93 Rate for above Trigger seeds
TkElectron-TkMuon 10,20 1 | <24,Az <1 93, 95 Total Level-1 Menu Rate (+30%)
TkMuon-DoubleTkElectron 6,17,17 0.1 | <24,Az <1 95, 93
DoubleTkMuon-TkElectron 5,5,9 4 In| <24,Az <1 95,93
PuppiTau-TkMuon 36(27),18 2 In| <21,Az< 1 90, 95 ' "
ThisoElecron-PuppiTa | 223909 5 h<2ia<i | » Able to maintain current performance at
AR > 0.3

/.5x1034 cm=2 s 1T and 200 PU — with
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% Level-1 Irigger algorithms:

» In current trigger possibility to apply requirements on correlations between multiple objects
(masses, Ag...)

» Natural continuation: instead of simple 1D cuts on objects and object correlations, use
modern ML tools to build more powerful multivariate discriminators

e Software tools to synthesize such algorithms into FPGA firmware now exist

* FPGASs resources now allow it

CMS Phase-2 Simulation 14 TeV, 200 PU

o o
(o)
|

Signal Eff.
oo

IIII|IIII [T
<

e Performed full exercise for VBF H—=invisible/bb

» L1 design, signal acceptance/rates, feasibility study for firmware > 0
Implementation

»  L1Seed design with DNN (feasibility study for firmware
implementation pertormed) with input variables: pT and n of 3
eading jets, pT(j)), m(j)), AR(j)), An(j}), Zeppenteld variables,

MET, Ap(MET ). ..
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% HIgNh level trigger

e Challenges:

» Achieve rejection factor 100:1 (while tracking available @ 1)
» Keep CPU time < 500 ms

» Reconstruction : more complex detector (HGCAL, tracking,

L L

-
3
1 L

average event processing time [ms]

.
8
LI UL

timing layer, etc. )

» Timing : increase with inst luminosity (7.5x input event rate), but ~ + s e
also with pile-up

e Requirements
» 18X more computing power
» 25X more data throughput

» No achievable by extrapolating current approach — need
paradigm shift — heterogeneous approach accepted (?)
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% —HIgh level trigger

e Main strategic choice: same framework and algorithms
used offline

» As current trigger which has served CMS well — allows rapid
deployment of new triggers etc.

[ raw data }/— =d| rawdata

dlgIS

clusters

e Current HLT R&D co-processors as off-load engines for

ntuplets

[
|
|
ot
|
N
’

\_);)\_);)\_;;/;)

specific algorithms [""‘e'““'“}"‘ .
pixel trac
»  Demonstrator with GPU for Run 3 — gain experience in CMS {""‘:.,'9523,"‘5}
» Pixel based tracking, ECAL and HCAL reconstruction prototyped [P'*e“ef“*-"]/ St
{lx%le\;g(r;lce]
e \arious architectures/processors possible CPU GPU

» Coprocessor equipped nodes, network offload service ...
P quipp Patatrack
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» Motivation and some important concepts

» Historical overview highlighting how challenges have driven development in the past

» Case study: current CMS trigger

» Case study: CMS trigger upgrade for HL-LHC

» Practical advice
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Practical agvice

e You might well have to design a trigger for some physics channel you are
iInterested In

e Not as unusual as you might imagine!

e Some things to remember....
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Practical agvice

e Generally

»  Keep It as simple as possible

» Easy to commission

» Easy to debug

» Easy to understand
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% Practical agvice

e Generally

» Be as inclusive as possible

»  One trigger for several similar analyses

» Your trigger should be able to discover the unexpected as well as the signal you intended It
for!
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% Practical agvice

e Generally

»  Make sure your trigger Is robust

»Triggers run millions of times a second so any strange condition WILL occur, make sure you
are prepared for it

»  Detectors don't work perfectly ever! make sure your trigger is immune to detector problems

» Beam conditions change - be prepared
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% Practical agvice

e Generally

»  Build in redundancy

»  Make sure your signal can be selected by more than one trigger

»  Helps to understand biases and measure efficiencies

»  Also for safety, it rates are too high or there's some problem you still get your events
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% Practical agvice

e Finally

» Taking your signal events is only part of the game

»  You might well also need background samples

»  You will need to measure the efficiency of your trigger using a redundant trigger path

»  You will need to know it it works! Monitoring.
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»>. 1 Outline

» Motivation and some important concepts

» Historical overview highlighting how challenges have driven development in the past

» Case study: current CMS trigger

» Case study: CMS trigger upgrade for HL-LHC

» Practical advice
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® [rigger is essential at (hadron) colliders

e Must have a huge rejection of unwanted events if we are to see low cross
section processes

e [rigger Is not there to do analysis, Just get the events written to tape at an
acceptable rate

e |n real life there are many more detalls to consider than discussed
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e [riggers driven by physics needs and accelerator environment

e Fasy future: ILC
»  No trigger!
» 200 us between trains
»  Buffer and readout everything

e Difficult future: HL-LHC/FCC-hh ...

»  Up to 200 interactions per bunch crossing
»  Need to keep trigger thresholds as LHC
»  Need to incorporate sophisticated detector into hardware algorithms e.g. tracking
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e | HC is a very challenging environment to search for new physics and measure
the properties of the Higgs bosor

> High instantaneous luminosity, high pileup etc.

»  Requires excellent performance online and oftline

e CMS trigger tackles these challenges
»  FPGA based, very high bandwidth processors with sophisticated, programmable algorithms

»  Flexible to evolve with CMS physics programme e.g. GPUs tor LHC Run 3

e Designing CMS trigger upgrade for HL-LHC

» Based on experience from current trigger system

» Integrating tracking and high-granularity detectors into Level-1 trigger and co-processors in HLT
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e | evel-1 Trigger:

* |Legacy TDR: https://cds.cern.ch/record/706847

* Run | performance paper: https://arxiv.org/abs/
1609.02366

* Phase 1 upgrade TDR: https://cds.cern.ch/record/
1556311

* Run 2 performance paper: https://arxiv.org/abs/
2006.10165

* Phase 2 upgrade TDR: http://cds.cern.ch/record/
2714897
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e High Level Irigger:

Legacy TDR: http://cds.cern.ch/record/
578006

Phase 2 upgrade interim TDR: https://
cds.cern.ch/record/2283193
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