Imperial College London

Collider Physics Analysis Procedures

Alex Tapper

Slides available at:

http://www.hep.ph.ic.ac.uk/~tapper/lecture.html

Aim

- Overview of analysis techniques at CMS
- Contrast with Tevatron (see DØ lecture)
 - -New energy regime
 - -New detector
 - Emphasis on robustness and data-driven techniques
 - -Nothing "fancy" (b-tagging, NN, BDT...)

Outline

- Quick reminder of CMS detector
- Basic physics objects
- Analysis SUSY search
- Summary

The CMS detector

The CMS detector

Analysis objects

- Basic list of objects needed for analysis
 - -Leptons
 - •muons, electrons, taus
 - -Hadronic jets
 - -Energy sums
 - MET, E_T....
- Typically want the E_T, η and φ of each reconstructed object
- Also often quality flags or isolation

Analysis objects: muons

- Muons
 - -Easiest to reconstruct
 - -Use tracks in silicon and muon chambers

Analysis objects: electrons & photons

- Electrons
 - -Search for isolated, compact EM energy
 - -Matched track
 - -Strikingly in 4T B-field all electrons have Bremsstrahlung photons
 - -Algorithms collect photons in electrons

Analysis objects: hadronic jets

• Jets

-Attempt to cluster together energies from parton

-Traditionally jets made from clustering HCAL and ECAL energies according to some algorithm (anti- K_T)

Analysis objects: taus

• Taus

- -Hadronic decays of tau leptons
- -Either one or three pronged decays to pions
- -Thin jets with few constituents
- -Backgrounds from QCD jets
- -No taus in CMS yet....

Analysis objects: MET

• MET

- -Vector sum of all energy deposits in the event
- -Very sensitive to mis-calibration, non-uniformity, beam backgrounds
- -Tevatron experience scary

• Particle flow - The Rolls Royce of reconstruction

• Particle flow - MET comes naturally

Particle flow - jets too

PFJets with (uncorrected) pr > 20 GeV/c
Particle inside the jet:
- Charged hadrons
- Photons
- Neutral hadrons
Particles outside the jet:
- Charged hadrons
- Photons
- Neutral hadrons
PFMET (1.9 GeV)

Analysis strategy: overview

1. Take data

- Detector, trigger, DAQ
- 2. Reconstruct physics objects
 - Muons, electrons, taus, jets, MET....
- 3. Simulation
 - Generate events, detector simulation

4. All the tools to make a measurement

SUSY search strategy

- Be as model independent as possible
 - But the MSSM has > 100 parameters
 - Need more constrained models
 - Choose a set of benchmark points that are representative of a range of topologies and areas of phase space
 - Range of models
 - MSUGRA (high and low masses)
 - GMSB
 - Split SUSY
 - In this talk MSUGRA at low masses, just above the Tevatron (LM0 and LM1)

J. Phys. G: Nucl. Part. Phys. 34 (2006)

SUSY search strategy

- Production
 - Squark and gluino expected to dominate
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of SUSY model

SUSY search strategy

- Production
 - Squark and gluino expected to dominate
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of SUSY model

- Decay
 - Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
 - Assume RP conserved \rightarrow decay to lightest SUSY particle (LSP)
 - Assume squarks and gluinos are heavy \rightarrow long decay chains
- Signatures
 - MET from LSPs, high-ET jets and leptons from long decay chain
 - Focus on robust and simple signatures
 - Common to wide variety of models
- Let Standard Model background and detector performance define searches not models

Backgrounds

- Physics
 - Standard Model processes that give the same signatures as SUSY
 - Cannot rely on Monte Carlo predictions \rightarrow measure in data
- Detector effects
 - Detector noise, mis-measurements etc. that generate MET or extra jets
 - Commissioning and calibration
- Beam related
 - Beam-halo muons (and cosmic-ray muons), beam-gas events
 - Data and simulation already \rightarrow measure in situ too

Backgrounds

- Data-driven background estimates are the key challenge in early SUSY searches
- General idea is find a control region where SM is dominant and use this to predict SM background in signal region
- Two approaches pursued:
 - Matrix (ABCD) methods \rightarrow playing variables off against each other
 - Replacement methods → modify SM with same topology as signal to predict signal
- In both cases need to identify clean SM control region
- Difficult to avoid using Monte Carlo in some way
- Will discuss all hadronic (jets + MET) search giving examples of data-driven methods →

 SUSY particles produced strongly and decay through long cascade

- Search for excess of events with large MET (from LSP) and several hadronic jets
- Veto events with leptons

- Simple (pre)selection
 - At least two jets with E_T >50 GeV and $|\eta|$ <3.0
 - Veto events with an electron or muon $P_{\rm T}{>}10~GeV$
- Use energy sums based on jets
 - More robust since you can put minimum $E_{\rm T}$ cut
 - $-H_T$ scalar sum of jet E_T
 - MHT vector sum of jet $E_{\rm T}$
- Enhance SUSY-like processes

 $-\,E_{\rm T}$ of two highest $E_{\rm T}$ jets > 100 GeV $|\eta_{j1}|{<}2.0$

 Look at simulation to see what processes form backgrounds to your signal →

- QCD is by far largest background
- Z-boson decays
- Top-pair production and W-boson decays

Background from QCD

- QCD processes lead to di-jet events
- Gluon radiation gives >2 jets
- When perfectly measured no MET but...
 - -Not a perfect detector
 - -Semi-leptonic decays in jets (b and c quarks)

Background from QCD

- Mis-measurement of a jet leads to MET along the jet axis
- Remove with $\Delta \Phi(\text{jet}_i, \text{MET}) > 0.3 \text{ rad}$

Also several methods developed to predict MET tail from QCD events

All-hadronic search

PRL101:221803 (2008) & CMS-PAS-SUS-09-001

• A novel approach combining angular and energy measurements

$$\alpha_{T} = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2} / E_{T j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}}$$

- Perfectly balanced events have $a_T=0.5$
- Mis-measurement of either jet leads to lower values

All-hadronic search

PRL101:221803 (2008) & CMS-PAS-SUS-09-001

- Originally proposed for di-jet events \rightarrow generalised up to six jets
- Perfectly balanced events have $a_T=0.5$ (cut at $a_T>0.55$)
- Mis-measurement of either jet leads to lower values

- After cut on $a_T > 0.55$ QCD under control
- Look at other backgrounds \rightarrow

Z-boson background

- Data-driven background estimate
 - Find a control region in phase space where SM background dominates
 - Use measurements in this region to infer SM background in signal region
 - Example Z \rightarrow vv + jets \rightarrow irreducible background
 - Replacement technique

Z → II + jets Strength: very clean Weakness: low statistics

 $W \rightarrow lv + jets$

Strength: larger statistics Weakness: background from SM and SUSY

ν

 γ + jets Strength: large statistics and clean at high E_T

Weakness: background at low E_T, theoretical errors

MET

Z-boson background

- Select γ + \geq 3 jets with E γ >150 GeV
 - Clean sample S/B>20
 - Remove photon from the event
 - Recalculate MET
 - Normalise with $\sigma(Z+jets)/\sigma(\gamma+jets)$ from MC or measurements

CMS-PAS-SUS-08-002

Background estimation

- SUSY signal more central than W, Z and QCD
- Consequence of s-channel pair-production of heavy particles
- Try and use this property \rightarrow

Graduate lectures, February 2010.

Background estimation

- Use high $|\eta|$ as a signal free control region
- Use this to extrapolate background prediction into central signal region
- Check behaviour at low H_T which is signal free
- Scan H_T and see excess to discover SUSY!

Selection cut	QCD _{MadGraph}	$Z \to \nu \bar{\nu}$	$W{\rightarrow \nu\ell}$	tī	$Z{\rightarrow \ell\ell}$	LM1	LM0
Trigger	$2.5 imes 10^{7}$	821	6618	17054	1157	926	7080
Preselection	$2 imes 10^6$	243	927	3154	109	448	2508
$H_{\rm T}>350{\rm GeV/c}$	$2 imes 10^6$	185	667	2603	76	442	2408
$\alpha_T > 0.55$	5.3	10	10	10	0.3	117	266
$R(H_{\rm T}^{\rm miss}) < 1.25$	$0.9^{+1.0}_{-0.9}$	$10.0{\pm}1.4$	$10.4{\pm}1.7$	$8.8{\pm}0.8$	$0.3\substack{+0.4 \\ -0.3}$	$116{\pm}1$	253 ± 6

- Hundreds of SUSY events with Standard Model backgrounds of 10s of events
- Robust early search with possibility to discover SUSY in 2010
- Data-driven methods to control and check background estimates

Summary

- Overview of collider physics techniques
- Emphasis on early searches
- Incomplete! Much more to learn....

Backup: Benchmark points

Low mass (LM) mSUGRA benchmarks

Benchmark	m0	m1/2	AO	tanb	sgn(mu)	Notes
LM0	200	160	-400	10	1	
LM1	60	250	0	10	+	
LM2	185	350	0	35	+	
LM2mhf360	185	360	0	35	+	
LM3	330	240	0	20	+	
LM4	210	285	0	10	+	
LM5	230	360	0	10	+	
LM6	85	400	0	10	+	
LM7	3000	230	0	10	+	
LM8	500	300	-300	10	+	
LM9	1450	175	0	50	+	
LM9p	1450	230	0	10	+	
LM9t175	1450	175	0	50	+	mtop = 175
LM10	3000	500	0	10	+	
LM11	250	325	0	35	+	
LM12						TBD
LM13						focus point, TBD

High mass (HM) mSUGRA benchmarks

Benchmark	m0	m1/2	A0	tanb	sgn(mu)	Notes
HM1	180	850	0	10	+	
HM2	350	800	0	35	+	
НМ3	700	800	0	10	+	
HM4	1350	600	0	10	+	

GMSB (GM) benchmarks

Benchmark	Lambda	M_mess	N5	C_Grav	tanb	sgn(mu)	Notes
GM1b	80	160	1	1	15	+	
GM1c	100	200	1	1	15	+	
GM1d	120	240	1	1	15	+	
GM1e	140	280	1	1	15	+	
GM1f	160	320	1	1	15	+	
GM1g	180	360	1	1	15	+	