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e Overview of analysis techniques at CMS

e Contrast with Tevatron (see D@ lecture)

—New energy regime
—New detector

—Emphasis on robustness and data-driven
techniques

—Nothing “fancy” (b-tagging, NN, BDT...)
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e Quick reminder of CMS detector

e Basic physics objects

e Analysis - SUSY search

e SUMmMary
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The CMS detector

Lead Tungstate Plastic-Brass Hadronic
Electromagnetic Calorimeter Calorimeter

Iron Yoke

Muon Detectors

Superconducting
Solenoid (4 Tesla)

Silicon Microstrip Tracker Silicon Pixel Detector
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The CMS detector
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Analysis objects

e Basic list of objects needed for analysis

—Leptons
emuons, electrons, taus

—Hadronic jets

—Energy sums
e MET, Er....

e Typically want the Er, n and ¢ of each
reconstructed object

o Also often quality flags or isolation
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Analysis objects: muons

Drift Tubes
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e Muons
—Easiest to reconstruct
—Use tracks in silicon and muon chambers
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Analysis objects: electrons & photons

M5/ CMS Experiment at the LHC, CERN

Y Datarecor ded: 2009-Dec-11 23:26:16.323226 GMT
Run: 124022

Event: 8325178

Lumi section: 71

e Electrons
—Search for isolated, compact EM energy
—Matched track

—Strikingly in 4T B-field all electrons have
Bremsstrahlung photons

—Algorithms collect photons in electrons
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Analysis objects: hadronic jets
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e Jets

—Attempt to cluster together energies from parton

—Traditionally jets made from clustering HCAL and
ECAL energies according to some algorithm (anti-Kr)
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Analysis objects: taus

® TaUS Lvi-2 T-jet axis
—Hadronic decays of tau v
leptons sora °°“"“s€‘>
—Either one or three pronged & > f
decays to pions £

—Thin jets with few :‘._.-.X
constituents

—Backgrounds from QCD jets P
—No taus in CMS yet....
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Analysis objects: MET
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e MET

—Vector sum of all energy deposits in the event

—\Very sensitive to mis-calibration, non-uniformity,
beam backgrounds

—Tevatron experience scary
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Analysis objects: particle flow

o Particle flow - The Rolls Royce of reconstruction
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Analysis objects: particle flow

e Particle flow - MET comes naturally

-2 P-flow: MET (1.9 GeV)
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Analysis objects: particle flow

e Particle flow - jets too

PFJet 1
pr 41.5 GeV/c (’ﬁ‘*\
(3

D%

N

PFJet2 & ~ ’ﬂ“‘\\

4

pr 37.5 GeV/¢

PFJet 3
pt 21.8 GeV/c

P-flow: MET (1.9 GeV)
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Analysis objects: particle flow

ES:ntl 2?5112%74 2.36 TeV data PRiets with (uncorrected) pr > 20 GeV/e
Particle inside the jet:

- Charged hadrons

- Photons

- Nevtral hadrons

Particles outside the jet:

- Charged hadrons

- Photons
- Neutral hadrons

pr 21.8 GeV/e

Jet algorithm: Anti-Kt 5
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Analysis strategy: overview

1. Take data
e Detector, trigger, DAQ

2. Reconstruct physics objects
e Muons, electrons, taus, jets, MET....

3. Simulation
e Generate events, detector simulation

4. All the tools to make a measurement
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SUSY search strategy

e Be as model independent as
possible

— But the MSSM has > 100 parameters

— Need more constrained models

— Choose a set of benchmark points
that are representative of a range of
topologies and areas of phase space

— Range of models
e MSUGRA (high and low masses)
e GMSB
e Split SUSY
— In this talk MSUGRA at low masses,

just above the Tevatron (LMO and
LM1)
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SUSY search strategy

e Production
— Squark and gluino expected to dominate
— Strong production so high cross section
— Cross section depends only on masses
— Approx. independent of SUSY model

Graduate lectures, February 2010. Page 18



SUSY search strategy

e Production
— Squark and gluino expected to dominate
— Strong production so high cross section
— Cross section depends only on masses
— Approx. independent of SUSY model

e Decay
— Details of decay chain depend on SUSY model (mass spectra, branching ratios, etc.)
— Assume RP conserved = decay to lightest SUSY particle (LSP)

— Assume squarks and gluinos are heavy = long decay chains

e Signatures
— MET from LSPs, high-ET jets and leptons from long decay chain
— Focus on robust and simple signatures

— Common to wide variety of models

e Let Standard Model background and detector performance define searches not
models
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Backgrounds

e Physics
— Standard Model processes that give the same signatures as SUSY
— Cannot rely on Monte Carlo predictions = measure in data

e Detector effects

— Detector noise, mis-measurements etc. that generate MET or
extra jets

— Commissioning and calibration

e Beam related
— Beam-halo muons (and cosmic-ray muons), beam-gas events
— Data and simulation already = measure in situ too
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Backgrounds

e Data-driven background estimates are the key challenge in early
SUSY searches

e General idea is find a control region where SM is dominant and
use this to predict SM background in signal region

e Two approaches pursued:
— Matrix (ABCD) methods = playing variables off against each other

— Replacement methods = modify SM with same topology as signal to predict
signal

e In both cases need to identify clean SM control region
o Difficult to avoid using Monte Carlo in some way

o Will discuss all hadronic (jets + MET) search giving examples of
data-driven methods =
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All-hadronic SUSY search

e SUSY particles produced strongly and decay
through long cascade

e Search for excess of events with large MET (from
LSP) and several hadronic jets

e \Veto events with leptons
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All-hadronic SUSY search

e Simple (pre)selection
— At least two jets with Er>50 GeV and |n|<3.0
—Veto events with an electron or muon Pt>10 GeV

e Use energy sums based on jets

—More robust since you can put minimum Er cut
—HTt scalar sum of jet Et
—MHT vector sum of jet Et

e Enhance SUSY-like processes
— Et of two highest Et jets > 100 GeV |nj1|<2.0

e Look at simulation to see what processes form
backgrounds to your signal —
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All-hadronic SUSY search
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e QCD is by far largest background
e /-boson decays
e Top-pair production and W-boson decays
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Background from QCD

) CMS Experiment at the LHC, CERN
< Date Recorded: 2009-12-06 07:18 GMT

Candidate ‘Dijet Collision Event
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e QCD processes lead to di-jet events
e Gluon radiation gives >2 jets
e When perfectly measured no MET but...
—Not a perfect detector
—Semi-leptonic decays in jets (b and c quarks)
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Background from QCD

e Mis-measurement of a jet leads to MET along the jet axis
e Remove with A®(jet;, MET) > 0.3 rad

A0(j2, B )

No. events/ 0.1x0.1/ 23.8pb*
No. events / 0.1x0.1 / 23.8pb™

25

Ao(j1, E) Aj1, E)

25

e Also several methods developed to predict MET tail from QCD
events
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All-hadronic search

PRL101:221803 (2008) & CMS-PAS-SUS-09-001

. jet LSP LSP

jet & W ,
| BACKGROUND Jje
jet / e ) SIGNAL topology

e A novel approach combining angular and energy measurements

ETJ'2 _ \/ETjZ/Ele
M, i, \/2(1—cosAcp)

o=

e Perfectly balanced events have ar=0.5
e Mis-measurement of either jet leads to lower values
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All-hadronic search

PRL101:221803 (2008) & CMS-PAS-SUS-09-001
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e Originally proposed for di-jet events = generalised up to six jets
o Perfectly balanced events have ar=0.5 (cut at ar>0.55)
e Mis-measurement of either jet leads to lower values
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All-hadronic SUSY search
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o After cut on ar>0.55 QCD under control
e Look at other backgrounds —
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/-boson background

e Data-driven background estimate A

— Find a control region in phase space where SM B 4"
background dominates W P

— Use measurements in this region to infer SM background in Z
signal region ; R §
— Example Z = vv + jets = irreducible background

— Replacement technique

“,\/u M\ A

Z — 11 + jets W — 1v + jets Y + jets
Strength: very clean Strength: larger statistics Strength: large statistics and
Weakness: low statistics Weakness: background from clean at high Er

SM and SUSY Weakness: background at low

ErT, theoretical errors
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/-boson background

e Select y + =3 jets with Ey>150 GeV
— Clean sample S/B>20

CMS-PAS-SUS-08-002

— Remove photon from the event S FT T W
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Background estimation

:1 ) | e Sy oy | ) | L , T
% 05 1 15 2 25 3
nl leading jet

e SUSY signal more central than W, Z and QCD

e Consequence of s-channel pair-production of heavy
particles

e Try and use this property —
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Background estimation
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Jse high |n| as a signal free control region

e Use this to extrapolate background prediction into central
signal region

e Check behaviour at low Ht which is signal free
e Scan Ht and see excess to discover SUSY!
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All-hadronic SUSY search

Selection cut QCDMadGraph Z—vi W—o vl tt Z— (¢ LMI1 LMO
Trigger 25 10 821 6618 17054 1157 926 7080
Preselection 2 x 10° 243 927 3154 109 448 2508
Hr > 350 GeV/c 2 x 10° 185 667 2603 76 442 2408
ar > 0.55 5.3 10 10 10 0.3 117 266

R{AS™) = 1.95 0974 10.0+1.4 104+1.7 8.8+0.8 03755 116+1 253+6

e Hundreds of SUSY events with Standard Model backgrounds
of 10s of events

e Robust early search with possibility to discover SUSY in 2010

e Data-driven methods to control and check background
estimates
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e Overview of collider physics techniques

e Emphasis on early searches

e Incomplete! Much more to learn....
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Backup: Benchmark points

Low mass (LM) mSUGRA benchmarks

LMO 200 [160 40010 |1

LM1 60 P50 0 10 W

LM2 185 50 0 35 W

ILM2mhf360 (185 [60 35 W

M3 330 P40 0O 20 K

LM4 210 R85 PO 10 W

M5 230 360 O 10 W

LM6 85 KO0 0 10 W

LM7 3000 230 |0 10 H

LMS8 500 300 |-300 10 H

M9 1450 1175 0 50

LM9p 1450 230 |0 10 H

LMIt175 1450 175 [0 50 W mtop = 175
LM10 3000 500 0 10 W

LMI11 250 325 |0 35 W

LM12 TBD
LM13 focus point, TBD

High mass (HM) mSUGRA benchmarks

HM1 180 850 [0 [10 W
HM2 350 800 |0 [B5S W
HM3 700 800 0 10 W
HM4 1350 600 [0 |10 W

GMSB (GM) benchmarks

GM1b 80 160 1 ]l 15
GMIc 100 200 I |l 15
GM1d 120 240 1 |l 15 W
GMle 140 280 1 ]l 15
GMIf 160 320 1 ]l 15
GMlg 180 360 1 |l 15 K
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