Probing proton structure in high-energy ep collisions

Alex Tapper
Imperial College London
For the H1 & ZEUS Collaborations
Deep inelastic scattering at HERA

- Probing the proton at small distance scales

\[Q^2 = -q^2 = -(k - k')^2 \]

\[x = \frac{Q^2}{2p \cdot q} \quad y = \frac{p \cdot q}{p \cdot k} \]

\[s = (p + k)^2 \quad Q^2 = x \cdot y \cdot s \]

- \(Q^2 \) is the “probing power”
- \(x \) is the Bjorken scaling variable
- \(y \) is related to the scattering angle in CMS (=\(\sin^2(\theta^*/2) \))
HERA I operation

\[e^+/e^- \rightarrow 27.5 \text{ GeV} \quad 820 \text{ GeV} \quad 920 \text{ GeV} \quad 1994-97 \quad 1998-00 \]

<table>
<thead>
<tr>
<th></th>
<th>e^+p</th>
<th>e^-p</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>~100 pb(^{-1})</td>
<td>~16 pb(^{-1})</td>
</tr>
<tr>
<td>ZEUS</td>
<td>~110 pb(^{-1})</td>
<td>~16 pb(^{-1})</td>
</tr>
</tbody>
</table>

HERA luminosity 1994 – 2000

Integrated Luminosity (pb\(^{-1}\))

Days of running
The H1 detector

- Liquid argon calorimeter
- 45000 cells
- EM:
 - Systematic 0.3-3%
- HAD:
 - Systematic 1.4-2%

Isolated electromagnetic cluster with matching track

\[
\frac{\sigma(E)}{E} = \frac{12\%}{\sqrt{E}} \oplus 1\%
\]

\[
\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} \oplus 1\%
\]
The ZEUS detector

- Compensating depleted uranium calorimeter
- 6000 cells
- EM:
 - Systematic 1-2%
- HAD:
 - Systematic 1%

\[
\frac{\sigma(E)}{E} = \frac{18\%}{\sqrt{E}}
\]

\[
\frac{\sigma(E)}{E} = \frac{35\%}{\sqrt{E}}
\]

Missing transverse momentum from the neutrino
DIS cross sections

NC Cross Section:

NC Reduced cross section: \(\tilde{\sigma}_{NC}(x, Q^2) \)

\[
\frac{d^2 \sigma^{NC}(e^\pm p)}{dx dQ^2} = \frac{2\pi \alpha^2}{x Q^4} Y_+ \left[F_2 - \frac{y^2}{Y_+} F_L \frac{m_Y}{Y_+} xF_3 \right] \quad Y_\pm = 1 \pm (1 - y)^2
\]

Dominant contribution

Sizeable only at high \(y \)

CC Cross Section:

CC Reduced cross section: \(\tilde{\sigma}_{CC}(x, Q^2) \)

\[
\frac{d^2 \sigma^{CC}(e^\pm p)}{dx dQ^2} = \frac{G_F^2}{4\pi x} \frac{M_W^4}{(Q^2 + M_W^2)^2} \left[Y_+ F_2^{CC} - y^2 F_L^{CC} m_Y xF_3^{CC} \right]
\]

CC Cross Section:

Contribution only important at high \(Q^2 \)
Kinematic range of HERA data

- Overlap with fixed target data at low Q^2 and high x
- Gluon distn at low x
- Valence quarks at high x
- Access to non-perturbative region
- Measurements extend fixed target data to higher Q^2 and higher y
- Probe distances down to $1/1000$ proton

Non-perturbative region
The structure function F_2

Wide range of predictions before HERA

Vast progress since the beginning of HERA
The structure function F_2

- F_2 dominates cross section
- Measured with precision of ~2-3%
- Systematics limited at low Q^2
- Statistics limited above $Q^2 \sim 1000$ GeV2
- Directly sensitive to sum of quarks and antiquarks

\[F_2 \propto \sum_q e_q^2 x(q + \bar{q}) \]
The structure function F_2

- F_2 sensitive to gluon density via QCD radiation
- Scaling violations
 - Largest at low x
 - Driven by gluon density
- Well described by QCD
The longitudinal structure function F_L

- At leading order in QCD $F_L = 0$
- Appears in NLO QCD
- Direct access to gluon distribution
- Important test of QCD

- Two methods from H1
 - “Derivative” method
 - “Shape” method
 - Will discuss new low Q^2 extractions

- ZEUS
 - ISR events to vary CMS energy
\[\left(\frac{\partial \sigma}{\partial \ln y} \right)_{Q^2} = \left(\frac{\partial F_2}{\partial \ln y} \right)_{Q^2} - F_L \cdot y^2 \cdot \frac{2 - y}{Y_+^2} - \frac{\partial F_L}{\partial \ln y} \cdot \frac{y^2}{Y_+} \]

- At a fixed \(Q^2 \)
 - \(F_2 \sim x^{-\lambda} \sim e^{\lambda \ln y} \sim 1 + \lambda \ln y + \ldots \)
- Fit \(\partial \sigma / \partial \ln y \) with a straight line at low \(y \) (<0.2)
- Extrapolate line to high \(y \)
- Difference between extrapolated line and measured points gives FL \((y>0.4)\)
- Assumption that \(\partial F_2 / \partial \ln y \) linear in \(\ln y \)
FL from the shape method

\[\sigma_{\text{FIT}} = c \cdot x^{-\lambda} \frac{y^2}{1+(1-y)^2} F_L \]

- Fit for one \(F_L \) point per \(Q^2 \) bin at \(<y> \)
- \(c, \lambda \) and \(F_L \) free parameters
- Shape driven by \(y^2/Y_+ \) factor
- Constant \(F_L \) over small \(x \) range
- Fits describe the data well
The structure function F_L

- Extractions consistent
- Shape method gives smaller uncertainties
FL from ISR events

- NC events with initial state radiation
- Hard photon detected in tagger
- Variation in \sqrt{s} gives access to a range of y values at a fixed x and Q^2
- Use shape of cross section as a function of y to measure F_L
Define:

\[\delta_{F_L} = \frac{\sigma(F_L \neq 0)}{\sigma(F_L = 0)} = \frac{F_2 - (1-\varepsilon)F_L}{F_2} \]

\[\varepsilon = \frac{2(1-y)}{1+(1-y)^2} \]

Fit:

\[\frac{N_{\text{data}}}{N_{\text{MC} (F_L=0)}} = N \cdot \delta_{F_L} \]

Fit as a function of y

- N and \(F_L \) free parameters
- \(F_2 \) measured

F_L from ISR events
The structure function F_L

- Direct measurement of F_L
- Currently not statistically precise, but…
 - Consistent with NLO QCD
 - Proof that ISR method can work
- For precise measurement of F_L at HERA in the future need to vary beam energy
High Q^2 cross sections & xF_3

- Current knowledge comes from fixed target data
- Data very precise but subject to theoretical uncertainties
 - Nuclear binding effects
 - Non-perturbative effects at low Q^2
- HERA data free from these uncertainties
- Data at high Q^2 and high x constrain the valence quark distributions
- Low statistics
 - Cross sections are low
- Sensitive to EW effects through exchange of Z^0 in neutral current and W in charged current
High Q^2 cross sections & $x F_3$

- Difference between e^+p and e^-p cross sections gives $x F_3$

$$x F_3 \propto \sum_q x (q - \bar{q})$$

- F_L is small contribution
- $x F_3$ comes from interference between gamma and Z^0 exchange processes
High Q^2 cross sections & xF_3

- HERA data confirm valence quark structure
- Uncertainties dominated by statistical uncertainty of e^-p data sample
- Clear need for high luminosity
Charged current cross sections

- Different for e^+p and e^-p
 \[\sigma \propto [u + c + (1-y)^2(d + s)]\]
 - e^-p sensitive to $u(x,Q^2)$
 - e^+p sensitive to $d(x,Q^2)$
 - e^+p suppressed by $(1-y)^2$ helicity factor
- Sensitive to M_W through propagator

![HERA I high Q^2 Charged Current](image-url)
Charged current cross sections

- e^+p scattering sensitive to $d(x,Q^2)$
- Current measurements limited by statistics
- In agreement with global PDFs
Charged current cross sections

- e^-p scattering sensitive to $u(x,Q^2)$
- Current measurements limited by statistics
- In agreement with global PDFs
Parton distributions

• PDFs cannot be calculated by pQCD
 – Measured at a Q^2 value
 – Parameterise as a function of x
 – Evolve using DGLAP to all Q^2 where pQCD is valid

• Accurate determination of PDFs allow accurate SM predictions

• QCD fits have many choices, should be reflected in the PDF uncertainty:
 – Starting scale, min Q^2, data sets, perturbative phase space? choice of
densities to parameterise, treatment of heavy quarks, functional form
of parameterisation, treatment of experimental systematic
uncertainties, renorm/factorisation scale…

• H1 & ZEUS make different choices…
ZEUS 2002 fit

- Essentially a global analysis
 - ZEUS 96/97 NC e^+p
 - p and d F_2 NMC
 - p and d F_2 E665
 - F_2 p BCDMS
 - CCFR xF_3
- 2.5 GeV^2 < Q^2 < 30000 GeV^2
- W^2 > 20 GeV^2
- Q_o^2 = 7 GeV^2
- Fit xg, xu_ν, xd_ν, xSea, x(db-ub)
- Thorne-Roberts VFNS
ZEUS 2002 fit

- Agreement with CTEQ and MRST
- $\Delta g \sim 10\% \, Q^2 > 20 \, \text{GeV}^2$
- Gluon negative for $Q^2 \sim 1 \, \text{GeV}^2$
- Can free α_s

$\alpha_s = 0.1166 \pm 0.0008\, \text{(uncorr.)} \pm 0.0032\, \text{(corr.)} \pm 0.0036\, \text{(norm.)} \pm 0.0018\, \text{(model)}$
H1 2000 fit

- Minimum number of data sets
 - H1 only
 - BCDMS $F_2 p$ as a cross check
- $3.5\,\text{GeV}^2 < Q^2 < 30000\,\text{GeV}^2$
- $Q_o^2 = 4\,\text{GeV}^2$
- Fit tuned combinations of PDFs to cross sections
 - $xg, xU (= u+c), xD (= d+s), xUb, xDb$
- Zero mass variable flavour number scheme
H1 2000 fit

- In agreement with CTEQ and MRST
- $\Delta x_U \sim 3\% \ x=0.4$
- $\Delta x_D \sim 10\% \ x=0.4$
- Uncertainties on valences PDFs factor ~2 larger with only HERA data
Summary

- Many interesting results from HERA I
- Analysis of structure function data is (almost) complete
- Precision of 2-3% for F_2
- HERA provide consistent picture of NC/CC/F_2/F_L/xF$_3$
- Measurements cover 5 orders of magnitude in Q^2 and x
- Probe structure of the proton at $10^{-18}m$
- Fits allow HERA data to constrain PDFs
Future prospects for HERA II

- H1 and ZEUS detectors upgraded
 - New detector components commissioned
- Design specific luminosity achieved
- 50% e^+ longitudinal polarisation achieved
- Beam currents limited by backgrounds in detectors
 - Remedied during current shutdown
- Improved precision at high Q^2
- F_L measurement from lower beam energy runs
- Measure polarisation dependence of charged and neutral current cross sections
- HERA III?