Probing Dark Matter at the LHC

Alex Tapper
Outline

• The LHC and ATLAS and CMS detectors

• Detector performance and Standard Model physics

• Status of Dark Matter searches at the LHC
 ▪ MET based searches
 ▪ Long-lived particle searches

• Future prospects and connection to cosmology

• Summary and outlook
The Large Hadron Collider

Overall view of the LHC experiments.

3.5 TeV 3.5 TeV

CMS

ATLAS

ALICE

LEP/LHC

T1 8

SPS

T1 2

LHC - B

Point 8

CERN

Point 1

ATLAS

Point 2

ALICE

Point 2

CMS

Point 5

LHC - B

Point 8

CERN

Point 1

ATLAS

Point 2

ALICE

Point 2

CMS

Point 5

International Workshop on Linear Colliders, 18-22 October 2010, Geneva, Switzerland.
The Large Hadron Collider

3.5 TeV p 3.5 TeV

So far 20 pb$^{-1}$

Another ~ week to go in 2010 pp run

Search results from 70-230 nb$^{-1}$
ATLAS and CMS detectors

- 4T solenoid magnet
- Silicon detector (pixel, strips)
- Crystal ECAL $\sigma(E)/E = 3%/\sqrt{E} + 0.003$
- Brass/sci. HCAL $\sigma(E)/E = 100%/\sqrt{E} + 0.05$
- Muon chambers $\sigma(p)/p < 10\%$ at 1TeV

- 2T solenoid & toroid magnets
- Silicon detector (pixel, strips) & TRT
- LAr ECAL $\sigma(E)/E = 10%/\sqrt{E} + 0.007$
- Tile/sci. HCAL $\sigma(E)/E = 50%/\sqrt{E} + 0.03$
- Muon chambers $\sigma(p)/p < 10\%$ at 1TeV

JINST3:S08004 (2008)
ATLAS and CMS detectors

- Muon chambers
- Solenoid magnet
- Transition radiation tracker
- Pixel detector
- LAr electromagnetic calorimeters
- Tile calorimeters
- LAr hadronic end-cap and forward calorimeters
- Toroid magnets
- Semiconductor tracker

International Workshop on Linear Colliders, 18-22 October 2010, Geneva, Switzerland.
• Measurements of jet cross sections and MET resolution
• Jets and MET in good shape already
• Measurements of jet cross sections and MET resolution
• Jets and MET in good shape already
• Beautiful reconstruction of W and Z bosons
• Leptons and MET reconstruction performing well
Standard Model physics

- Top-quark pair-production and $Z \rightarrow \tau^+ \tau^-$
- b-tagging and τ-tagging performing well already

CMS PAS-TOP-10-004

CMS PAS-PFT-10-004

Events / 9.0 GeV/c²

CMS Preliminary 2010
$L_{\text{int}} = 1.7 \text{ pb}^{-1}, \sqrt{s} = 7 \text{ TeV}$

Jet multiplicity

visible Mass[GeV/c²]
What can we search for?
- Detectors designed for discovery of particles in GeV to TeV range
- Luminosities give lower bound production cross sections

WIMP dark matter
- Neutralinos, KK particles, Little Higgs…
- Missing energy signatures
- Difficult to distinguish between different types of candidate

Gravitinos/axinos...
- Hints possible from long-lived particles
- Distinctive signatures in detector

WIMP dark matter

- WIMPS neutral and weakly interacting so difficult to observe
- Direct production has small cross section and no signal in detector
- Production in conjunction with Standard Model particles better option for detection
- Design searches
MET based searches

- Production
 - Pair-produce new heavy particles
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of model
MET based searches

- **Production**
 - Pair-produce new heavy particles
 - Strong production so high cross section
 - Cross section depends only on masses
 - Approx. independent of model

- **Decay**
 - Details of decay chain depend on model (mass spectra, branching ratios, etc.)
 - Some conserved quantum number needed for dark matter (R-parity, T-parity, KK-parity…)
 - Assume original particles are heavy (since we haven’t detected them) ➔ long decay chains

- **Signatures**
 - MET from dark matter candidate, high-\(E_T\) jets and leptons from long decay chain

- **Focus on robust and simple signatures**
 - Common to wide variety of models
Jets + MET searches

- All-hadronic search highly sensitive, but suffers from many backgrounds
- Reach beyond Tevatron with 2010 data
- Reach up to masses of ~800 GeV with 1 fb$^{-1}$
Jets + MET searches

- Simple (ignoring lots of things) jet cuts (anti-\(k_T\) R=0.4)
 - Leading jet \(E_T>70\) GeV
 - Other jets \(E_T>30\) GeV
- Veto isolated leptons (\(P_T>10\) GeV)
- QCD MC normalised to data in two jet channel (uncertainty neglected)
Jets + MET searches

- **Further selection**
 - MET > 40 GeV
 - \(\text{MET}/M_{\text{eff}} > 0.3(0.2) \)

<table>
<thead>
<tr>
<th></th>
<th>Monojet</th>
<th>(\geq 2) jets</th>
<th>(\geq 3) jets</th>
<th>(\geq 4) jets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Monte Carlo</td>
<td>Data</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>After jet cuts</td>
<td>21 227</td>
<td>23 000</td>
<td>108 239</td>
<td>108 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(^{+7000}_{-6000})</td>
<td>(^{+3100}_{-25000})</td>
<td>(^{+1000}_{-8000})</td>
</tr>
<tr>
<td>(E_T^{\text{miss}}) cut</td>
<td>73</td>
<td>46 (^{+22}_{-14})</td>
<td>650</td>
<td>450 (^{+190}_{-120})</td>
</tr>
<tr>
<td>(\Delta\phi) and (E_T^{\text{miss}}) cuts</td>
<td>–</td>
<td>–</td>
<td>280</td>
<td>200 (^{+110}_{-65})</td>
</tr>
<tr>
<td>(E_T^{\text{miss}}/M_{\text{eff}}, \Delta\phi) and (E_T^{\text{miss}}) cuts</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>6.6 (^{+3}_{-3})</td>
</tr>
</tbody>
</table>

Integral over 50 GeV

- **Two Jet Channel**
 - *ATLAS Preliminary*
 - Data 2010 \(\sqrt{s} = 7 \text{ TeV} \)
 - Monte Carlo
 - QCD
 - W+jets
 - Z+jets
 - \(t\bar{t} \) (x10)

- **Four Jet Channel**
 - *ATLAS Preliminary*
 - Data 2010 \(\sqrt{s} = 7 \text{ TeV} \)
 - Monte Carlo
 - QCD
 - W+jets
 - Z+jets
 - \(t\bar{t} \) (x10)

17 International Workshop on Linear Colliders, 18-22 October 2010, Geneva, Switzerland.
Single-lepton + MET search

- Requiring one lepton (e or μ) suppresses QCD background powerfully
- Highly sensitive to SUSY
- Backgrounds come from Standard Model processes with neutrinos → real MET
- In particular top and W decays
Simple cuts (once again too lazy to list cleaning, triggers...)

- One isolated lepton with $P_T > 20$ GeV
- At least two jets $E_T > 30$ GeV

QCD MC normalised to data at MET < 40 GeV and $M_T < 40$ GeV

Uncertainty 50% from fake rate study comparison with data
Single-lepton + MET search

- **Further selection**
 - MET > 30 GeV
 - $M_T > 100$ GeV

<table>
<thead>
<tr>
<th>Selection</th>
<th>Electron channel Data</th>
<th>Electron channel Monte Carlo</th>
<th>Muon channel Data</th>
<th>Muon channel Monte Carlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T(\ell) > 20$ GeV \cap</td>
<td>143</td>
<td>157 \pm 85</td>
<td>40</td>
<td>37 \pm 14</td>
</tr>
<tr>
<td>≥ 2 jets with $p_T > 30$ GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_T^{\text{miss}} > 30$ GeV</td>
<td>13</td>
<td>16 \pm 7</td>
<td>17</td>
<td>15 \pm 7</td>
</tr>
<tr>
<td>$\cap m_T > 100$ GeV</td>
<td>2</td>
<td>3.6 \pm 1.6</td>
<td>1</td>
<td>2.8 \pm 1.2</td>
</tr>
</tbody>
</table>

ATLAS Preliminary

$E_T^{\text{miss}} > 30$ GeV & $m_T > 100$ GeV

20 International Workshop on Linear Colliders, 18-22 October 2010, Geneva, Switzerland.
Di-lepton + MET searches

- Low yields but very interesting properties
- Same sign searches
 - Very low Standard Model background rate
 - Backgrounds from charge mis-identified top events (QCD in τ channel)
- Opposite sign
 - Use opposite-sign, opposite-flavour sample to subtract SM background
First look at the MET distributions for di-leptons.

At least two muons $P_T^1 > 20$ GeV $P_T^2 > 10$ GeV $M_{ll} > 5$ GeV.

Normalise QCD MC to data in $5 < M_{ll} < 15$ GeV and MET < 15 GeV.

100% uncertainty assumed on W and QCD backgrounds and 60% for Z.

Good description by Monte Carlo.
Long-lived particle searches

- Long-lived particles possible in many theories
 - Indirect support for some dark matter candidates
 - For example many SUSY models with stau NLSP with Gravitino LSP
 - Gravitino LSP could be contribution to dark matter

- Long-lived charged particles with lifetimes of $O(1000)$ s could explain the discrepancy between Li abundance and BBN

- Two complementary approaches:
 - High momentum tracks with large dE/dx E loss
 - Stopped particles may decay any time \Rightarrow signal out-of-time with LHC beam
HSCP searches

- Heavy stable charged particles (HSCP) escape detector
 - Muon-like signature in muon chambers
- Slow moving, high momentum particles
 - Large ionisation energy loss
- dE/dx (TOF in future)

Figure:
- CMS Preliminary 2010 $\sqrt{s} = 7$ TeV, 198 nb$^{-1}$
- Graph showing dE/dx estimator vs. P (GeV/c) for different stop masses (Stop130, Stop200, Stop600)
HSCP searches

- Exclusion limits for stau, stop and gluino
 - Tracker only and tracker & muon chambers covers different models

![Graphs showing cross-sections vs. HSCP mass for different scenarios.]
Stopped particle searches

- Long-lived particles produced in pp collisions
- Particles stop in detector in brass absorber in barrel hadronic calorimeter
- Search for decays during non-collision times (between bunches, orbits and fills)

- Counting experiment in lifetime bins
So far limits on stopped gluinos \(\rightarrow \) technique could be used to set limits on stopped staus with more data.
Future prospects

• Taken the first steps towards searches ➔ What might happen?

• Discovery with 2010-2011 data sample if M<800 GeV
 ▪ First inclusive studies and indication of mass scale
 ▪ Constraint within models example coming up ➔

• High luminosity required for “precision” measurements
 ▪ Masses, spins, cross sections, branching ratios
 ▪ As more parameters are determined, relax model assumptions to achieve more general results for dark matter

• Will always need direct detection measurements
Mass determination example

- Two undetected LSPs per event
 - No mass peaks
 - Constraints from edges and endpoints in kinematic distributions

- Two-body

\[
(m_{l_i}^{\text{max}})^2 = \frac{(m_{\tilde{\chi}_2}^0 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1}^0)}{m^2}
\]

- Three-body

\[
S(m_{l_i}) = \frac{1}{\sqrt{2\pi}\sigma} \int_0^{m_{\text{cut}}} dy \cdot y \sqrt{y^4 - y^2 (m^2 + M^2) + (m M)^2} \frac{1}{(y^2 - m_{\tilde{\chi}_2}^2)^2} \\
\times \left(-2y^4 - y^2 (m^2 + 2M^2) + (m M)^2 \right) e^{-\frac{(m_{l_i}^0 - y)^2}{2\sigma^2}}
\]

- Simplest example - many others with endpoints, thresholds and other variables (\(M_{T2}\) and friends)
- Vast literature (recommended review Barr & Lester arXiv:1004.2732)
Mass determination example

- **Fit ee, μμ and eμ distributions simultaneously**
 - Resolution function and efficiencies from data
 - Monte Carlo study for 200 pb$^{-1}$ @ 10 TeV (600-700 pb$^{-1}$ @ 7 TeV)
 - Di-leptonic end-point $m_{ll,\text{max}}=51.3 \pm 1.5 \text{ (stat.)} \pm 0.9 \text{ (syst.)} \text{ GeV}$ [52.7 GeV]

- **Nice example of what could be done with modest dataset**
Interpreting mass example

JHEP 0809:117, 2008

- Including current limits, precision EW HEP data and WMAP constraints in constrained SUSY model
- Include opposite-sign di-lepton edge measurement
- 1 fb⁻¹ @ 14 TeV with 3 GeV experimental and theoretical uncertainties

• R. Lafaye, M. Rauch, T. Plehn, D. Zerwas (SFITTER)
• H. Flächer, M. Goebel, J. Haller, A. Höcker, K. Mönig, J. Stelzer (GFITTER)
• P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann (FITTINO)
• L. Roszkowski, R. Ruiz de Austri, R. Trotta (SuperBayes)
• S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz, M.P. Hobson
Spin-independent elastic cross section per nucleon (old plot sorry...)
Convenient illustration of direct and indirect WIMP searches
Summary and outlook

- Searches for dark matter at the LHC have begun!

- With the 7 TeV run might already make a discovery with impact on dark matter

- Future data will allow the LHC experiments to determine some of the properties of any discovery but will be a huge challenge requiring the ultimate performance of the accelerator and detectors

- Complementary measurements necessary to reveal the true nature of dark matter in detail
Documents for ICHEP on preparations for SUSY searches at LHC

- ATLAS Collab., Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS Detector (ATLAS-CONF-2010-065)
- ATLAS Collab., Early supersymmetry searches with jets, missing transverse momentum and one or more leptons with the ATLAS Detector (ATLAS-CONF-2010-066)
- CMS Collab., Performance of Methods for Data-Driven Background Estimation in SUSY Searches (CMS-SUS-10-001)
- Early supersymmetry searches in events with missing transverse energy and b-jets with the ATLAS detector (ATLAS-CONF-2010-079)
- Prospects for Supersymmetry discovery based on inclusive searches at a 7 TeV centre-of-mass energy with the ATLAS detector (ATL-PHYS-PUB-2010-010)
- The CMS physics reach in searches at 7 TeV (CMS-NOTE-2010-008)
Backup: Links

- **ATLAS latest results**
 - https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults

- **ATLAS Physics TDR**

- **CMS latest results**
 - https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

- **CMS Physics TDR**
 - http://cmsdoc.cern.ch/cms/cpt/tdr/
Backup: Benchmark points

Low mass (LM) mSUGRA benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>m0</th>
<th>m1/2</th>
<th>A0</th>
<th>tanb</th>
<th>sgn(mu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM0</td>
<td>200</td>
<td>160</td>
<td>-400</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM1</td>
<td>60</td>
<td>250</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM2</td>
<td>185</td>
<td>350</td>
<td>0</td>
<td>35</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM2nhf360</td>
<td>185</td>
<td>360</td>
<td>0</td>
<td>35</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM3</td>
<td>330</td>
<td>240</td>
<td>0</td>
<td>20</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM4</td>
<td>210</td>
<td>285</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM5</td>
<td>230</td>
<td>360</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM6</td>
<td>85</td>
<td>400</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM7</td>
<td>300</td>
<td>230</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM8</td>
<td>500</td>
<td>300</td>
<td>-300</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM9</td>
<td>1450</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM9p</td>
<td>1450</td>
<td>230</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM9t175</td>
<td>1450</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>mtop = 175</td>
<td></td>
</tr>
<tr>
<td>LM10</td>
<td>300</td>
<td>500</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM11</td>
<td>250</td>
<td>325</td>
<td>0</td>
<td>35</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>LM13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>focus point, TBD</td>
<td></td>
</tr>
</tbody>
</table>

High mass (HM) mSUGRA benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>m0</th>
<th>m1/2</th>
<th>A0</th>
<th>tanb</th>
<th>sgn(mu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM1</td>
<td>180</td>
<td>850</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HM2</td>
<td>350</td>
<td>800</td>
<td>0</td>
<td>35</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HM3</td>
<td>700</td>
<td>800</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HM4</td>
<td>1350</td>
<td>600</td>
<td>0</td>
<td>10</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

GMSB (GM) benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Lambda</th>
<th>M_{mess}</th>
<th>N5</th>
<th>C_Gray</th>
<th>tanb</th>
<th>sgn(mu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM1b</td>
<td>80</td>
<td>160</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GM1c</td>
<td>100</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GM1d</td>
<td>120</td>
<td>240</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GM1e</td>
<td>140</td>
<td>280</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GM1f</td>
<td>160</td>
<td>320</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GM1g</td>
<td>180</td>
<td>360</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particle</th>
<th>SU1</th>
<th>SU2</th>
<th>SU3</th>
<th>SU4</th>
<th>SU6</th>
<th>SU8.1</th>
<th>SU9</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{d}_L</td>
<td>764.90</td>
<td>3564.13</td>
<td>636.27</td>
<td>419.84</td>
<td>870.79</td>
<td>801.16</td>
<td>956.07</td>
</tr>
<tr>
<td>\tilde{u}_L</td>
<td>760.42</td>
<td>3563.24</td>
<td>631.51</td>
<td>412.25</td>
<td>866.84</td>
<td>797.09</td>
<td>952.47</td>
</tr>
<tr>
<td>\tilde{b}_1</td>
<td>697.90</td>
<td>2924.80</td>
<td>575.23</td>
<td>358.49</td>
<td>716.83</td>
<td>690.31</td>
<td>868.06</td>
</tr>
<tr>
<td>\tilde{t}_1</td>
<td>572.96</td>
<td>2131.11</td>
<td>424.12</td>
<td>206.04</td>
<td>641.61</td>
<td>603.65</td>
<td>725.03</td>
</tr>
<tr>
<td>\tilde{d}_R</td>
<td>733.53</td>
<td>3576.13</td>
<td>610.69</td>
<td>406.22</td>
<td>840.21</td>
<td>771.91</td>
<td>920.83</td>
</tr>
<tr>
<td>\tilde{u}_R</td>
<td>735.41</td>
<td>3574.18</td>
<td>611.81</td>
<td>404.92</td>
<td>842.16</td>
<td>773.69</td>
<td>923.49</td>
</tr>
<tr>
<td>\tilde{b}_2</td>
<td>722.87</td>
<td>3500.55</td>
<td>610.73</td>
<td>399.18</td>
<td>779.42</td>
<td>743.09</td>
<td>910.76</td>
</tr>
<tr>
<td>\tilde{t}_2</td>
<td>749.46</td>
<td>2935.36</td>
<td>650.50</td>
<td>445.00</td>
<td>797.99</td>
<td>766.21</td>
<td>911.20</td>
</tr>
<tr>
<td>\tilde{c}_L</td>
<td>255.13</td>
<td>3547.50</td>
<td>230.45</td>
<td>231.94</td>
<td>411.89</td>
<td>325.44</td>
<td>417.21</td>
</tr>
<tr>
<td>\tilde{c}_c</td>
<td>238.31</td>
<td>3546.32</td>
<td>216.96</td>
<td>217.92</td>
<td>401.89</td>
<td>315.29</td>
<td>407.91</td>
</tr>
<tr>
<td>\tilde{c}_t</td>
<td>146.50</td>
<td>3519.62</td>
<td>149.99</td>
<td>200.50</td>
<td>181.31</td>
<td>151.90</td>
<td>320.22</td>
</tr>
<tr>
<td>\tilde{\bar{u}}_L</td>
<td>237.56</td>
<td>3532.27</td>
<td>216.29</td>
<td>215.53</td>
<td>358.26</td>
<td>296.98</td>
<td>401.08</td>
</tr>
<tr>
<td>\tilde{\bar{u}}_R</td>
<td>154.06</td>
<td>3547.46</td>
<td>155.45</td>
<td>212.88</td>
<td>351.10</td>
<td>253.35</td>
<td>340.86</td>
</tr>
<tr>
<td>\tilde{\bar{t}}_L</td>
<td>256.98</td>
<td>3533.69</td>
<td>232.17</td>
<td>236.04</td>
<td>392.58</td>
<td>331.34</td>
<td>416.43</td>
</tr>
<tr>
<td>\tilde{\bar{t}}_R</td>
<td>832.33</td>
<td>856.59</td>
<td>717.46</td>
<td>413.37</td>
<td>894.70</td>
<td>856.45</td>
<td>999.30</td>
</tr>
<tr>
<td>\tilde{\bar{c}}_L</td>
<td>136.98</td>
<td>103.35</td>
<td>117.91</td>
<td>59.84</td>
<td>149.57</td>
<td>142.45</td>
<td>173.31</td>
</tr>
<tr>
<td>\tilde{\bar{c}}_c</td>
<td>263.64</td>
<td>160.37</td>
<td>218.60</td>
<td>113.48</td>
<td>287.97</td>
<td>273.95</td>
<td>325.39</td>
</tr>
<tr>
<td>\tilde{\bar{c}}_t</td>
<td>466.44</td>
<td>179.76</td>
<td>463.99</td>
<td>308.94</td>
<td>477.23</td>
<td>463.55</td>
<td>520.62</td>
</tr>
<tr>
<td>\tilde{\bar{d}}_L</td>
<td>483.30</td>
<td>294.90</td>
<td>480.59</td>
<td>327.67</td>
<td>492.42</td>
<td>479.01</td>
<td>536.89</td>
</tr>
<tr>
<td>\tilde{\bar{d}}_R</td>
<td>262.06</td>
<td>149.42</td>
<td>218.33</td>
<td>113.22</td>
<td>288.29</td>
<td>274.30</td>
<td>326.00</td>
</tr>
<tr>
<td>\tilde{\bar{u}}_L</td>
<td>483.62</td>
<td>286.81</td>
<td>480.16</td>
<td>326.59</td>
<td>492.42</td>
<td>479.22</td>
<td>536.81</td>
</tr>
<tr>
<td>\tilde{\bar{u}}_R</td>
<td>115.81</td>
<td>119.01</td>
<td>114.83</td>
<td>113.98</td>
<td>116.85</td>
<td>116.69</td>
<td>114.45</td>
</tr>
<tr>
<td>\tilde{\bar{t}}_L</td>
<td>515.99</td>
<td>3529.74</td>
<td>512.86</td>
<td>370.47</td>
<td>388.92</td>
<td>430.49</td>
<td>632.77</td>
</tr>
<tr>
<td>\tilde{\bar{t}}_R</td>
<td>512.39</td>
<td>3506.62</td>
<td>511.53</td>
<td>368.18</td>
<td>386.47</td>
<td>427.74</td>
<td>628.60</td>
</tr>
<tr>
<td>\tilde{\bar{H}}</td>
<td>521.90</td>
<td>3530.61</td>
<td>518.15</td>
<td>378.90</td>
<td>401.15</td>
<td>440.23</td>
<td>638.88</td>
</tr>
<tr>
<td>\tilde{\bar{t}}</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
<td>175.00</td>
</tr>
</tbody>
</table>
Backup: Mass determination

Transverse mass

The m_{T2} variable is the generalization of the transverse mass to pair decays [32]. For a final state consisting of two visible objects with transverse momenta $p_T^{(1)}$ and $p_T^{(2)}$ respectively, and with missing transverse momentum p_T, it is defined by

$$m_{T2}(p_T^{(1)}, p_T^{(2)}, p_T) = \min_{q_T^{(1)}, q_T^{(2)}} \left\{ \max \left(m_T\left(p_T^{(1)}, q_T^{(1)}\right), m_T\left(p_T^{(2)}, q_T^{(2)}\right) \right) \right\}$$

where m_T is the transverse mass [51]

$$m_T\left(p_T^{(i)}, q_T^{(i)}\right) = 2|p_T^{(i)}||q_T^{(i)}| - 2p_T^{(i)} \cdot q_T^{(i)},$$

and the minimization is over all values of the two undetectable particles’ possible missing transverse momenta $q_T^{(1,2)}$ consistent with the E_T^{miss} constraint. This variable represents an event-by-event lower bound on the mass of any pair-produced semi-invisibly decaying particle which could have resulted in the observed state [34].

Contransverse mass

This variable is useful in events in which a pair of identical parent particles has decayed semi-invisibly producing visible daughters (with momenta $j^{(1,2)}$). The contransverse mass is defined by [55]

$$m_{C_T}\left(j^{(1)}, j^{(2)}\right) = 2E_T\left(E_T^{(1)} + E_T^{(2)}\right).$$

It is invariant under back-to-back boosts of the parent particles, and provides a lower bound on a combination of the masses of the parent and undetectable daughter particles. The contransverse mass is sensitive to the boost of the centre-of-momentum frame of the parent particles in the laboratory transverse plane and must therefore be corrected using the procedure described in [36].