DAQ/Online: readiness for DESY and CERN beam tests

Paul Dauncey
Imperial College London

Detailed list of items for DESY and CERN
DAQ hardware layout

“Core” DAQ system
CRC status

• Progress has been negative
 • Adam Baird (RAL engineer) has not fixed any more errors on delivered boards
 • 16th board is still with manufacturer with a short
 • Several new bad channels have developed at DESY

• New bad channels are worrying
 • Two correspond to channels which had lower noise in UK tests (but did respond normally to calibration)
 • The others were (apparently) normal
 • Implies problems with this second set arose since arrival in DESY

• Must be very careful in handling
 • Cable connectors known to be a weak point; must always use screws
 • Must strain-relieve cables at crate end; cable-tie to top of crate not to side
 • Must always wear a ground strap; these could be static discharge problems
 • If static, then not fixable; connector trace breaks may be repairable
Need to plan CRC use carefully

- Need to determine **exact size** of the problem
 - How many bad channels now exist? Must use a VFE PCB to be sure
 - Need **systematic test** of every FE connector input; **who** will do this?
 - If problems seen, need to check alternative FE connector
 - Also check if input is connected through to first stage of ADC circuit

- Adding **bridging wires** for broken traces can be done
 - Probably best for Adam to do this; need to be done in the UK
 - Do we **return boards** to the UK? Need to be sure enough left at DESY
 - Need (realistic) **schedule** for ECAL/AHCAL module delivery
 - The numbers…
 - I believe we have around **98** fully working FEs, spread over 15 CRCs
 - Most of other 22 have one or two bad channels; 8 have bad FEs
 - Total required for final system is **90** so this is not comfortable
 - Total required for ECAL run next week is **26** (plus a few for AHCAL)
 - Total required for CERN runs?
DAQ core hardware

- **Core DAQ** system shipped to DESY
 - Timing set by preparations for ECAL run
 - Other two DAQ PCs already at DESY
- Still need to **test CRCs** in the UK
 - Repairs by Adam of broken traces
 - Debugging last CRC when short fixed

- Set up test system in **borrowed crate and VME interface** at UCL
 - Not SBS bus adaptor so completely different driver/VME access underneath
 - Hacked HAL **DummyBusAdapter** to interface DAQ code to hardware
- Allows **some level** of checks and code development…
 …but many things can now **only** be done at DESY
 - SBS driver issues, speed-ups, inter-PC communication tests, etc.
 - Will cause **disruption** to run if not scheduled carefully
Other hardware for DESY

- New **custom backplane** installed at DESY
 - Inter-crate trigger cable made and whole trigger path tested; **worked OK**
 - Following test, second (~spare) backplane being made at Imperial
- **Other PCs** exist and connected to local network
 - **AHCAL PC** installed by Marius and Roman
 - Monitoring/histogramming PC **installed and running**, due to Götz, George, and Roman
- **Control PC nfs mount** of 3TByte disk array
 - Other PCs connected to DAQ local network can **see data** directly
- **VFE-CRC cables** purchased a long time ago
 - Not halogen-free so **cannot** be used at CERN
- **TDC** for drift chamber readout revived by Michele and Erika
 - Used to measure performance of chambers with non-flammable gas
 - Results on this presented during meeting (?)
Slow controls/readout

- **ECAL** power supply control (Simon)
 - Read out via stand-alone PC; will need to interface to DAQ
 - I have no replies to emails on this
 - It will presumably not be read out for ECAL run

- **ECAL** stage position (Bernard/Didier)
 - Stage controlled by stand-alone PC
 - Readout interface to DAQ tested and working a year ago
 - PC OS was patched and registered at DESY yesterday
 - Currently checking interface still works

- **AHCAL** slow data and stage position (Sven)
 - All centralised in stand-alone PC (running H1 slow control program)
 - Readout and control interface to DAQ tested; stage position controllable
 - Finalising definition of other data this week; needs more work to complete
 - Must add beam line settings data when we get to CERN
CERN tracking

• We can borrow CERN delay wire chambers
 • Finally got information at CERN meeting last week!
 • Each chamber is 10×10cm² and has x and y readout
 • Each x and y readout by lumped delay line in both directions
 • Delay timing gives 0.2mm/ns, resolution is 200µm
 • CERN provide gas, we need to provide HV and readout

• We requested four chambers but may only get three (or even two)
 • Investigate shipping Japanese chambers from DESY
 • Then need to provide gas also, safety issue with flammable gas again

• Need to have a TDC which can buffer data during spill
 • Needs up to 16 channels, range > 500ns, LSB < 1ns, buffer > 2k events
 • DESY LeCroy 1176 TDC has only 32 event buffer 🥷
 • Got a CAEN V767 TDC out from CERN loan pool (yesterday)
 • 128 (!) channels, 800µs range, 0.8ns LSB, 32kword buffer ⚽
 • Needs to be tested to be sure will do the job; use for ECAL run?
CERN tracking fallback

- Use **DESY TDC** (assuming OK to take it; it belongs to Zeus!)
 - Can only buffer 32 events so must read out during a spill
- Only read TDC but **not** CRCs during spill
 - Will severely limit 1kHz trigger rate during spill
- Several **tricks** to try
 - Reduce data volume by turning off falling edge readout
 - Buffer for 32 triggers and read all 32 at once by block transfer
 - Parallel read ahead while rest of DAQ does other processing
 - Would make offline access different (and more complicated)
- Never been tried; if managed to get 150Hz (random guess)
 - During 4.8sec spill, would take ~700 events
 - Average rate over 16.8sec machine cycle then ~40Hz
- Can test rates at DESY but need realistic occupancy, i.e. beam
 - Again may disrupt ECAL run
CERN PID

- **Cherenkov** detector, ~50m upstream
 - Mainly for e/π separation
 - Threshold Cherenkov; threshold must be adjusted for each beam energy
- **Beam control software** being **upgraded** for LHC
 - Same software does **threshold adjustment**
 - Not clear if it will be ready in time for first CERN run
 - Fallback would be adjust by hand; limits ease of changing **beam energy**
- **If usable, readout is trivial**
 - Single discriminated logic signal fixed in time relative to the trigger
 - Simply convert to LVDS and input to trigger CRC
 - CRC trigger data records history of all inputs
- **In principle, could also be included in the trigger**
 - In practise, arrival time is probably too late given our **latency**
 - Must select events offline which have this bit set
Other hardware for CERN

- **Halogen-free cables** for VFE-CRC not yet in hand
 - A few ordered by Felix for test but **not yet delivered**
- **Cables for ~30m run** from barracks to experimental area
 - VME readout; one 100m FO cable per crate. Only one purchased, other ordered by Erika but **not yet delivered**
 - ECAL slow data; 30m (?) copper cable but may be **marginal** in length. Jean-Charles may convert to fibre optic?
 - ECAL stage; Didier extended to 60m copper RS232 cable, **exists**
 - AHCAL slow data; two 100m FO cables, Sven ordered but **not yet delivered**
 - Cable to take beam spill signals from barrack to experimental area; two TTL 60m lemo cables, do not exist; **who can provide?**
- **Can take both existing VME crates** to CERN
 - Erika borrowed addition equipment for **AHCAL module test stand** at DESY
 - Extra VME crate, SBS card set in hand
 - Allows new module testing to continue at DESY during CERN run
Firmware status

• Main issue is buffering event data during spill
 • Firmware currently used on CRCs at DESY is limited
 • Can only buffer up to 500 events, but need 2000
 • Can only buffer in 2MBytes of memory, but need 8MBytes
 • Irrelevant for DESY; read event by event

• New version under development in UK
 • Using full 8MBytes of memory now possible

• Remaining problem is event counters/memory control
 • 1000 event FIFOs hit FPGA gate limit
 • Need to rewrite firmware for FIFOs to get around limit

• Will fully debug a 1000 event/8MByte version
 • This will be the fallback for CERN
 • But will push to covert the FIFOs to handle 2000 events also
 • Impossible to predict when this will be completed
Firmware fallback

- What could we do with only **1000 event** buffer at CERN?
 - Spill structure is **4.8sec** beam, **12.0sec** deadtime
 - Assume trigger rate of 1kHz, readout rate of 100Hz

- **Simple** approach
 - Take 1000 triggers to fill 1000 buffer in ~1sec
 - Read out 1000 events from buffer in ~10sec
 - Wait for next spill for ~5.8sec
 - Averaged event rate ~ 1000/17 ~ **60Hz**

- **More complicated** approach
 - Take 350 triggers in ~0.3sec
 - Read out 350 events from buffer in ~3.5sec
 - Take 1000 triggers in ~1sec
 - Read out 1000 events in ~10sec
 - Wait for next spill for ~2.0sec
 - Averaged event rate ~ 1350/17 ~ **80Hz**

Would require careful tuning with exact rates to optimise
Integration tests

• Have been doing ECAL/AHCAL combined runs for months
 • Using single crate with software cludged to make it look like two crates
 • Appears to all other software as if two separate crates
• DAQ core system at DESY finally allowed true dual-crate test
 • All PCs connected via local Gbit switch
 • Guarantees bandwidth independent of external network
• Tested two crate read using two PCI cards in same PC
 • Disappointing result; parallel read no faster than serial read
 • Looks like SBS driver blocks more than one process
 • Only one VME access at once, even if to two different crates
• Tested two crate read using two PCI cards in two PCs
 • Coordinated by sockets; worked well and gave almost double rate
 • 12 full CRCS (approx full load) were read at 120Hz flat out
 • Realistic rate in non-optimal conditions plus TDC; might be a little slower?
Data integrity

• Workaround for VME bus error causing exception
 • Catch exception immediately and retry read; never seems to fail twice
 • Has been stress tested and does not cause problems
 • Fundamental cause not yet understood; still monitoring frequency

• Some events missing trigger
 • Due to trigger occurring at same time as trigger BUSY reset
 • BUSY is never lowered, so next trigger does not happen
 • Now detected in software; retry reset when this occurs
 • Has been stress tested and does not cause problems

• VME driver cannot handle signals (Ctrl-C, etc) correctly
 • Signals were used to start runs, end runs, end program, etc.
 • Sometimes get corrupted data if reading when signal arrives
 • Have rewritten control to avoid use of signals; now uses shared memory
 • This has been installed and is running without problems
Upcoming software improvements

• Trigger handling not **flexible enough** given all ongoing activities
 • Needs recompile or rewiring to go from ECAL-only to AHCAL-only
 • Solution straightforward; would also fix a few other issues
 • Would require significant testing to ensure each run type has the right trigger

• Run **sequences** requested
 • Predefined lists of runs which can be executed sequentially
 • No intrinsic obstacle, but quite a lot of **infrastructure**; under development

• Speed up for **online monitoring** histograms
 • ROOT very general but **memory management** makes it slow here
 • Could replace data storage with much simpler (faster) system
 • Display would still be done using ROOT so would appear identical
 • Also, whole histogram filling code could run in parallel process

• Speed up for **data readout**
 • **Read-ahead** for event data when otherwise hanging for next record
Non-technical issues

• DAQ is critically short on effort
 • I’ve been on about this for ages
 • Flagged up in the last Technical Review

• Expert coverage for DESY and CERN currently two people
 • Core code is me, Marius is now AHCAL expert
 • Nobody yet identified as equivalent for ECAL
 • No other volunteers have stepped forward
 • Lots of things to do before/during CERN run; let me know if you can help

• Started running shifts at DESY with non-experts
 • Not very smooth; some bugs/features found
 • Main errors were operator mistakes due to lack of documentation, clear rules and communication problems
 • Anne-Marie and Erika have since produced much better instructions: http://www.hep.ph.imperial.ac.uk/calice/testBeam/testBeam.html
Summary

• DESY ECAL run
 • Hardware mainly in place or on order
 • Firmware is functional
 • Software is functional but needs further documentation
 • Slow controls needs some work

• CERN runs
 • Still several hardware pieces missing but most on order
 • Firmware not fully functional but fallback is not a disaster
 • Software will have to be flexible as running mode not yet known
 • Extra slow controls work for beam line settings

• Have functioning independent UK test system
 • Required for CRC repairs

• Will have independent DESY test system
 • Required for testing AHCAL new modules before being sent to CERN