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1 Introduction

In this paper, we present results from a test sensor which was designed to investigate a novel
approach to sampling electromagnetic calorimeters (ECAL). In this approach, the readout of the
sensitive layers of the ECAL are binary, meaning that each of the pixels which cover the sensitive
layers return a yes/no result with no further amplitude information. With a fine enough pixel
granularity, specifically less than 100 tm pitch such that the probability of more than one charged
particle hitting a pixel is kept small, then the number of pixels reporting a hit in a layer should be
effectively a measure of the number of charged particles crossing that layer. In contrast, an analogue
readout ECAL measures the energy deposited by the charged particles rather than counting them
directly. Hence, compared to the binary device, the resolution of the analogue device will be
degraded by the fluctuations in the amount of energy deposited by each charged particle. Therefore,
a binary ECAL should have an intrinsically better resolution for electromagnetic showers.

Although the potential applications for a binary ECAL are wide, the sensor discussed in
this paper was designed to study a specific application, namely the International Linear Collider
(ILC) [1]. The work presented in this paper has been done within the context of the CALICE Col-
laboration [2], which is studying calorimetry for future linear colliders. For a recent status report on
the collaboration activities, see [3]. One particular crucial aspect of ILC calorimetry is its ability to
support particle flow techniques [4], so as to obtain excellent hadronic jet energy resolution. These
techniques depend on spatial pattern recognition within the calorimeters. A binary ECAL would
have far superior spatial granularity (by about two orders of magnitude) compared to an analogue
ECAL and so should also give better particle flow performance.

The basic motivation for a binary readout ECAL is presented in [5] and a preliminary com-
parison of an ECAL with a fixed sampling geometry but with binary and analogue readout has
been presented recently [6]. As pointed out in the former, a critical limitation for any simulation
comparison of binary and analogue ECALs is that the density of charged particles in the core of
a high-energy electromagnetic shower has not been measured at the relevant granularities, namely
less than 100 um. Differences in the core density between data and simulation could have a signifi-
cant impact on the achievable resolution of the binary ECAL. Therefore, the sensor described in this
paper was developed for two purposes. Firstly, it allows a study of the feasibility of implementing
a MAPS sensor for a binary ECAL. Secondly, once a functional sensor has been developed, it can
then be used to experimentally determine the electromagnetic shower core density at the relevant
granularity. This will allow simulation to give an accurate and robust prediction of the performance
of a full-scale binary ECAL.

This paper covers the first of these issues, namely the performance of a MAPS sensor designed
to study an architecture appropriate for a binary ECAL. In the rest of this paper, the design and
fabrication of the test sensor are presented in section 2. Section 3 describes the simulations used for
modelling the sensor response. Sections 4 and 5 presents results of individual pixel measurements,
from test pixels with analogue readout and bulk pixels with digital readout, respectively. Finally,
section 6 describes results of sensor-wide measurements.



2 Design and fabrication

In this paper, we present results from a test sensor which was designed to investigate a binary ECAL
and to demonstrate the feasibility of this approach. Because a complete ECAL for this application
would require a total number of pixels of the order of 10'2, this development has been named
the Tera-Pixel Active Calorimeter (TPAC) sensor. This paper reports on results from the first two
versions of a test sensor, TPAC 1.0 and 1.1, which were based on a 0.18 um CMOS process.

The use of CMOS structures for light-sensing applications was originally proposed in the
1970s and CMOS imaging sensors were implemented in the 1990s [7]. Numerous recent develop-
ments to the pixel design and processing, such as the pinned photodiode, have achieved high-grade
performance in areas such as low noise and leakage current. Such performance can be applied
beyond the commercial imaging domain, and CMOS sensors have been demonstrated in many
alternative applications including particle physics [8].

A key advantage of CMOS imaging is the use of standard CMOS fabrication processes, in
which a diverse family of NMOS and PMOS transistors, resistors, capacitors and diodes can be
manufactured on the same silicon substrate as the sensitive pixel; hence these sensors are often
referred to as Monolithic Active Pixel Sensors (MAPS). In typical imaging applications this allows
the integration of the readout electronics and control logic at the edge of the array of imaging
pixels, offering a very compact one-chip imaging solution. Although the requirements for particle
physics applications of CMOS sensors share many aspects with those for commercial imaging,
such as low noise performance, the pixel pitch needed is usually larger. For the binary readout
ECAL, pixel sizes of order 100 um are needed [5]. This large pixel area provides an opportunity
to exploit the full range of components available in the CMOS process, with the possibility to add
significant amounts of circuitry inside these larger pixels, rather than around the periphery of the
sensor. While these in-pixel components would reduce the light reaching the sensor for imaging
applications, they have no effect on the passage of charged particles.

2.1 Process technology

The CMOS silicon substrate comprises a very low resistivity base material, over which a P-doped
epitaxial layer is grown, generally up to 20 um in thickness. For the application described here,
epitaxial layer thicknesses of 5 and 12 um were used. The silicon substrate and epitaxial layer
are predominantly free of electric fields, so any charge that has been deposited in the silicon will
move randomly by diffusion, with typical carrier lifetimes of milliseconds, and will be collected in
times of the order of 100 ns (see section 4). A potential barrier exists due to the change in substrate
doping between the silicon substrate and the epitaxial layer as well as between the heavily doped
P-wells and the epitaxial layer, which is sufficient to keep the majority of carriers within the epi-
taxial layer. Also an electric field forms around the positively biased N-well to P-epitaxial diode,
in which a diffusing electron will be swept towards the N-well and collected as signal. Figure 1
illustrates the basic principles.

As stated above, the epitaxial layer is the detecting volume where charge is generated. A good
approximation is to consider that the most probable total number of electron-hole pairs generated
by a MIP in silicon is equal to 80 pairs/um. For the 12 um thick epitaxial layer used in TPAC 1.0,
this corresponds to only about 1000 electron-hole pairs. There will also be some contribution
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Figure 1. Conceptual illustration of a charged particle crossing a CMOS sensor epitaxial layer. The N-well
to P-epitaxial diode at the upper left is the signal collecting diode. The one at the upper right encloses a
PMOS transistor which is part of the in-pixel circuitry. Left: the latter is exposed and so can absorb signal
charge, reducing efficiency. Right: the N-well diode is shielded from absorbing signal charge by the deep
P-well implant between it and the epitaxial layer, reducing signal loss.

to the charge generation from the upper few microns of the substrate which increases the MIP
signal charge to around 1200 e~. However, given that the charge can freely diffuse between pixels,
the number of charge carriers collected by any single pixel is smaller. Clearly, any further loss,
specifically due to charge collection by unrelated N-wells, would make the efficient detection of
MIPs in CMOS sensors very difficult, if not impossible.

Due to diffusion, the signal charge will not necessarily be collected by the nearest diode, in
which case it continues to diffuse and may be collected by a diode in a neighbouring pixel. In
particle physics tracking applications or in imaging sensors this effect is called “crosstalk” and
represents an undesirable loss of image quality for the latter. Although this is less of an issue for
an ECAL sensor, it will still degrade the performance in this application and so the pixel design
presented in this paper implements four diodes, placed toward the corners of the pixel for optimum
crosstalk reduction. The advantage of this approach is also a reduction in charge collection time,
as the mean distance to any diode is shorter than the single-diode solution at the same pixel pitch.

The structure of a standard PMOS transistor presents difficulties for use in a pixel design,
due to the N-well in which the PMOS device sits. Such N-wells, tied to a positive potential, are
as likely to collect diffusing charge as the collecting diode. However, any charge which reaches
these N-wells will not be collected as signal on the diode, and so this behaviour represents an
inefficiency in charge collection. For this reason, commercial CMOS sensors normally only use
NMOS transistors within the pixel, although this significantly limits the circuit functionality that
can be implemented. For a complex pixel design with many PMOS transistors and small collecting
diodes, this inefficiency could dominate the charge collection and the resulting signal size would
be too small to resolve over the electronic noise.

To address the problem of inefficiency caused by PMOS transistors in the pixel, we proposed
adding a deep P-well implant to the standard CMOS process. This high-energy implant creates



a heavily P-doped beneath the N-well of a PMOS transistor, as shown in figure 1. The potential
barrier that forms, much like the boundary between the epitaxial layer and the substrate, is again
sufficient to keep the majority of carriers within the epitaxial layer, and more importantly, from
being collected by the N-well. This technique restores the charge collection efficiency of the sen-
sor to be close to 100%, although some minor reduction in the initial signal charge will occur, as
charge deposited in the small proportion of the epitaxial layer that is now occupied by the deep
P-well implant will be lost.

For the successful implementation of this project, the deep P-well module was implemented in
a leading 0.18 um commercial process. This fabrication process is called “Isolated N-well MAPS”
(INMAPS) and is described in detail elsewhere [9]. The INMAPS process features up to six metal
layers, precision passive components for analogue circuit design, and may be stitched to manufac-
ture sensors up to wafer scale. Whilst for this project a particular commercial partner was selected,
the technology could be implemented in many modern CMOS processes. This is an important
feature if large-scale production were ever required for a full-size calorimeter.

The TPAC sensors were manufactured using the INMAPS process, and implemented deep P-
well implants in the pixels to achieve a high charge collection efficiency. To further understand the
device physics, the same design was manufactured with two thicknesses (5 um or 12 um) of the
epitaxial layer and with or without the deep P-well implant.

2.2 Overall architecture

The TPAC sensors comprise a 168 x 168 pixel array, totalling 28,224 pixels, together with row con-
trol logic, on-sensor SRAM memory banks and I/O circuitry in a 9.7 x 10.5 mm? die. The sensor
has been developed with the ILC application in mind. It is designed to be sensitive during a “bunch
train”, a short period of the order of 1 ms, which is subdivided into “bunch crossings”, typically
with several thousand bunch crossings per train. This structure is consistent with the proposed ILC
operation. The sensors collect the charge deposited by an incident particle in pixels arranged on
a 50 um pitch. This signal is compared with a global threshold and if above threshold, the bunch
crossing time-code and location of the pixel “hit” is recorded in on-sensor memory for readout
following the bunch train.

Four different pixel designs have been implemented for evaluation, which fall into two distinct
architectures, called pre-shape and pre-sample. These four designs are arranged in four quadrants
of 84 x 84 pixels. All pixels contain four small N-well diodes for charge collection and these are
identical for all four designs. Pixels may be individually masked, allowing any permutation of
single pixels to be operated and evaluated.

A common control and readout architecture serves all pixel varieties, allowing the sensor to
be operated as a whole or as sub-regions. Rows of 42 pixels share row control logic and SRAM
memory, while columns of 168 such rows form a region which shares data readout. All four regions
multiplex their data for external readout off-sensor. An overview of the architecture is shown in
figure 2, together with a photograph of the TPAC 1.0 sensor.

2.3 Pre-shape pixel

The pre-shape pixel is based on a conventional analogue front end for a charge-collecting detector
and is shown in figure 3.
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Figure 2. Left: overview of sensor architecture; see text for a detailed explanation. Right: photograph of
the sensor mounted on its PCB. The four pixel regions and memory areas are visible within the central area
of the sensor.
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Figure 3. Pre-shape pixel circuit; see text for a detailed explanation.
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Four diodes are connected to a charge preamplifier, which generates a voltage step output in
proportion to the collected charge. A CR-RC shaper circuit with time constants around 30 ns then
generates a pulse with output size in proportion to the input signal. However, the shaper circuit
response is constrained by the slower preamplifier output rise time, so the overall peaking time for
a impulse input is around 150 ns. Including the further circuit gain, full circuit simulation predicts
a gain of 164 uV/e~ with respect to total input charge. The simulated response of the charge
preamplifier and shaper, as well as a local common-mode reference, to signals of varying magnitude
is shown in figure 4. These signals form the pseudo-differential inputs to the two-stage comparator.

The preamplifier reset is used to initialise the pixel before the start of a bunch train but is then
held open during data-taking. During the train, following a charge deposit, the shaper circuit re-
turns to a stable state after a time depending on the signal size, and is then able to respond to another
input deposit. Saturation in the shaper circuit occurs for individual signal charge deposits greater
than 2500 e~ beyond which the shaper output becomes non-linear and takes a longer time to return
to the steady state. In addition, because the preamplifier is not reset during the bunch train, satura-
tion of the pixel will also occur if the preamplifier stage integrates 10 ke~ in total on the diode node
during a bunch train. Beyond this, the gain of the pixel deteriorates, reaching 50% after 22 ke, un-
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Figure 4. Simulated pre-shape pixel circuit response as a function of time, for signals injected at the pream-
plifier input at a time corresponding to 10 us on the time axis. The two pseudo-differential comparator
inputs are shown. The small positive-going traces are from the preamplifier output, which provides an effec-
tive common mode DC reference that tracks process variations. The larger negative-going traces are from
the shaper output, and these give the signal. The input signals shown have various magnitudes up to a maxi-
mum of 2500 e~ in steps of 250 e~. The input signal shape is modelled as an exponential rise with a 50 ns
time constant. Together with the finite circuit response speed, this means the observed signals peak around
200 ns after the signal injection time.

til it will no longer respond to an input signal. The expected incident signal charge for a single pixel
during a bunch train for the ILC ECAL application is small compared to these saturation limits.

To achieve high circuit gain in the preamplifier, a small feedback capacitance of 4.5 fF was
required (see figure 3), which was made using two larger capacitors in series to comply with man-
ufacturing design rules. Two different simulation tools, Eldo [10] and Spectre [11], were used
to evaluate the optimum orientation of the series feedback capacitors, but the two tools selected
different topologies for highest gain. Two capacitor orientations were therefore implemented on
the TPAC 1.0 sensor as subtle variants of the pre-shape pixel and these occupy quadrants 0 and
1. Results from and comparisons of the performance of both quadrants 0 and 1 are shown in the
following sections.

The in-pixel comparator has two stages. The first stage takes two differential signals, and pro-
duces a real-time differential result, with some small analogue signal gain. The second, high-gain
comparator generates the full-swing discriminator output, and applies an offset trim adjustment
with a four-bit resolution. The output of the second comparator is enabled with a one-bit mask
which can be used to prevent the pixel from generating hit outputs.

Pixel signals which cross through the threshold from below generate a fixed length pulse using
a monostable circuit, the output of which is connected to row control logic outside the pixel. The
length of the resulting hit output pulse is thus independent of the signal size.

Electronic circuit noise is estimated at the input to the differential comparator and referred
back to the diode node using the charge gain. The dominant noise source is the input transistor of
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Figure 5. Pre-sample pixel circuit; see text for a detailed explanation.

the preamplifier circuit; the predicted equivalent noise charge (ENC) for this pixel is 23 e™.

The nominal power consumption for the pre-shape pixel is 8.9 W during operation, although
it is assumed that in any realistic sensor, the circuit would be powered off between bunch trains at
the ILC. This mode of operation was not supported by the TPAC system described here so it has
not been tested. However, other studies within CALICE have demonstrated that this is a feasible
assumption [3]. Assuming a factor of 100 reduction in power by this method, this is equivalent to
an average power consumption of 36 uW/mm? and hence is is significantly larger than the target
power of the analogue ECAL designs for the ILC detectors [12, 13]. However, the main aim of the
TPAC 1.0 sensor is to investigate the concept of a binary ECAL and demonstrate the feasibility of
the design with a new technology. Power was regarded as a secondary issue, at least for this first
demonstrator. Lower power designs will be considered in future versions of the sensor.

2.4 Pre-sample pixel

The pre-sample pixel architecture is closer to that of a conventional MAPS optical sensor. It has
in-pixel analogue storage of a reference level, and is shown in figure 5. This design was found to
perform worse than the pre-shape circuit in initial tests and testing was stopped early on to con-
centrate on the latter. Therefore, no detailed study of its performance was done, and hence no pre-
sample pixel results are shown in the rest of this paper. Only pre-shape pixels were implemented
in the next version of the sensor, but the pre-sample design is described here for completeness.

The pixel diodes are reset and the reset level is sampled and stored in-pixel prior to the start
of each bunch train. Charge integrates on the four collecting diodes, causing a small voltage step
proportional to the collected charge and the node capacitance. A charge preamplifier provides a
voltage step which, along with the local sample of the reset level, forms a pseudo-differential input
to the same two-stage comparator as for the pre-shape design. The predicted gain of the circuit is
440 uV/e~. The charge amplifier and reference sample must be reset after a hit before the pixel
can detect another hit; this is undertaken by the in-pixel logic.

The simulated response of the circuit to signals of varying magnitude is shown in figure 6.
Saturation in the pre-sample pixel occurs when the diode node has integrated 64 ke, beyond which
non-linear operation is expected.
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Figure 6. Simulated pre-sample pixel circuit response as a function of time to input signals injected at a
time corresponding to 10 is on the time axis. The input signals shown have various magnitudes up to a
maximum of 2500 ¢, in steps of 250 ¢~. The input signal shape is modelled as an exponential rise with a
50 ns time constant.

Similarly to the pre-shape pixel, a small capacitance in the preamplifier feedback is made with
two capacitors in series. This gives rise to two subtle variants of the pre-sample pixel, again based
on results from different simulator tools, and these occupy quadrants 2 and 3.

The in-pixel comparator stage is common to all pixel architectures, but the pre-sample pixel
includes an additional monostable circuit to generate the self-reset signals that are necessary to
reset the amplifier and the reference sample in preparation for another input signal.

Electronic circuit noise is estimated at the input to the differential comparator and referred
back to the diode node using the charge gain. The circuit simulation predicts an ENC at this input
of 22 ¢~. The dominant noise sources are the input transistor of the first source follower buffer
and the input device in the charge amplifier circuit. However, the overall observed noise when
operating the pixel will be larger by an additional factor of v/2 to account for the uncorrelated
sampling nature of this pixel. This correction needs to be applied to the real-time simulation noise
level and so predicts an overall noise of 37 ¢~

The nominal power consumption for the pre-sample pixel is 9.3 uW during operation, al-
though again the circuit would be powered off between bunch trains at the ILC.

2.5 Mask and trim configuration

Each pixel contains a five-bit SRAM shift register, which is used to store a per-pixel trim (four
bits) and a mask flag (one bit). The configuration shift registers are not used while the sensor is
in active operation, but these configuration data are programmed during sensor initialisation, and
are held indefinitely in each pixel until the sensor is powered down or the data are rewritten. The
configuration data are loaded through a serial interface, which shifts single-bit data into each of 168
columns simultaneously, as illustrated in figure 7. Serial data outputs are available at two points to
enable data read-back for error-rate monitoring. The data read is destructive, so in normal opera-
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Figure 7. Overview of logic for configuration data write and readback. To load, one bit of the configuration
data for each column are shifted into the register at the top of the diagram. When completed, these bits
are parallel-loaded into the pixels below. This is continued until all pixel bits are loaded. The previously
stored configuration data are captured in the register at the bottom of the diagram and read out, allowing a
consistency check.

tion the read-back occurs after hits have been collected. The total configuration memory space on
the sensor is 138 kbits.

2.6 Pixel layout

The pre-shape and pre-sample pixel layouts are illustrated in figure 8. The pre-shape pixel com-
prises 160 transistors, 27 capacitor cells and a large polysilicon resistor. The pre-sample pixel
comprises 189 transistors and 34 capacitor cells. The two pixel architectures use the same diode
positions. The diodes are not located exactly on a 25 um pitch square grid but were moved slightly
towards the corners of the 50 m pixel. These positions were optimised for charge collection using
the simulation described in section 3.1.

The sensitive analogue front-end circuits are located in the very centre of the pixel with ex-
tensive substrate-grounded guard rings for signal integrity. Analogue signals are routed primarily
on metal layer 1, with some plates of metal layer 2 used where necessary to shield the analogue
signals from switching signals passing overhead. The deep P-well layer is added as a symmetrical
cross structure which leaves only the collecting N-well diodes exposed to the epitaxial layer, as
shown in figure 9.

Pixel power supplies are routed on the metal layers 3, 4 and 6 in horizontal and vertical di-
rections to distribute power in a mesh structure. The various sub-circuits in each pixel design are
mostly powered separately in this first sensor, so there are five independent power supplies routed

~-10-
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Figure 8. Pixel layouts; pre-shape (left) and pre-sample (right). The boxes labelled “D” indicate the diode
positions. The nominal borders of the pixels are shown by the right-angled corners and dotted lines.

Figure 9. Pixel deep P-well implant layouts; pre-shape (left) and pre-sample (right). The orientation is the
same as in the previous figure. The nominal border of the pixel is shown by the dashed lines, so the areas
outside this are part of the eight neighbouring pixels. The grey shows the deep P-well implant area while the
purple shows the N-well structures. All the N-well regions are protected by deep P-well implant except for
the four signal diodes towards the pixel corners.

to the pixels. The hit output signals from pixels are routed horizontally along a row on metal layer
5, which is fully shielded from the sensitive analogue electronics below by the metal layers in
between.

2.7 Row control logic

The row logic is responsible for monitoring the individual hit outputs from a row of 42 pixels and
writing details of any hits to local memory. An external clock defines the timing with which hit
signals are sampled. The hit signal from a pixel is asynchronous, but will have a fixed output pulse
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Figure 10. Overview of the row logic for hit storage; see text for details.

width defined by the in-pixel monostable bias setting. This pulse length would typically be set to
be around 10% greater than the hit sampling period, which would be matched to the bunch crossing
rate of the target application, typically 200-400 ns. This regime ensures that an asynchronous hit
will always be sampled by the synchronous logic, with a small probability that it will be sampled
twice. This is an acceptable data overhead that allows for a reasonable spread in the length of the
monostable pulses, with a minimal risk that an entire hit pulse occurs between sampling such that
the hit is lost. The sampling of hits uses an alternating (“ping-pong”) circuit architecture to ensure
there is no dead time between samples.

The 42 sampled hit signals are subdivided into seven “banks” for most efficient processing
and storage. Each bank is selected for inspection in turn with a three-bit multiplex (MUX) address
code. An OR circuit then tests the six pixel outputs of the bank to see whether the bank contains
any hits. If so, the six-bit pixel hit pattern and the three-bit MUX address code are stored, thus
identifying a single location in the full row of 42 pixels. This is illustrated in figure 10. A feature
of this approach is in the case of a dense particle shower, for which multiple nearby hits are stored
in a single register, rather than multiple registers. The hit-seeking circuits operate at eight times the
bunch crossing rate, i.e. up to 50 MHz. Multiplex signals are gray-coded for reliable high speed
operation, and the reserved address value 0 deselects all banks for additional testing provision.

— 12—



2.8 Data storage

The row control logic has 19 SRAM registers available for storage of hit data. A memory controller
is implemented to organise the use of these registers, such that registers are not overwritten once
used, and only those with valid data participate in readout. This memory controller is implemented
as a bidirectional shift register, with 20 cells. The memory control register initialises with a token
in the first position, which enables the first SRAM register for write access. During data write the
shift register advances to the next position, filling the SRAM registers in order for the first 19 hits.
A further hit in the row then moves the token into a holding cell, which raises a global overflow
flag indicating the memory full status. This hit, and any further hits on that row, will be discarded.

The row control logic may be operated in “hit override” mode, whereby the result of the OR
circuit is ignored and the value of the hit pattern in each bank is always stored. This operating
mode fills the memories in less than three complete cycles of the standard control sequence, and so
is intended as a test feature.

The 19 SRAM registers occupy the full 50 um row pitch. The hit pattern and corresponding
MUX address are stored in the first 9 bits of a register, with a further 13 bits used to store the
global timestamp code, which is incremented each time hit signals are sampled. The cross-coupled
inverter structure of a SRAM cell ensures the data will be held indefinitely provided the cell is
powered, so there is no requirement to refresh the data and no maximum hold time after which data
are corrupted.

The full TPAC 1.0 sensor comprises four columns of row logic, each with 168 rows, hence
there are 12,768 SRAM registers of 22 bits each in total. The row control logic and the SRAM
register bank occupy a 250 um wide region adjacent to the 42 pixels, equivalent to the area of five
pixels. There is no sense circuitry in this region and, as no deep P-well is added here, charge arising
from particles that pass through these regions will be collected by local N-wells associated with
PMOS transistors in the logic and SRAM. This charge will not be collected as signal and the logic
and SRAM are therefore insensitive to incident particles. In addition, an inactive 50 um wide strip
across the centre of the sensor corresponding to a single row of pixels, is used to distribute bias
and reference voltages, and to re-buffer control signals. These inactive regions result in the sensor
having an inherent 11% dead area.

2.9 Readout

During readout, the memory controller is switched into the reverse direction and clocked once to
initialise the token to enable the most recently written register for readout. A combinational read-
enable signal propagates to the first register that has valid data for readout, and enables the connec-
tion to the parallel readout bus. On each subsequent clock of the memory controller the next valid
register is selected until no further registers remain, at which point a “done” output flag is asserted.
The off-sensor control software uses this flag to initiate readout of each logic column in turn.

In addition to the 22-bit SRAM registers, a 9-bit ROM cell is activated during readout of each
row. These extra cells encode a unique row address that forms part of the parallel data bus.

The SRAM and ROM readout is implemented with a current sense amplifier which was op-
timised to operate over long distances with minimal read time. An activated SRAM or ROM cell
pulls current from the parallel data bus depending on its state, which is sensed by the circuit at the
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column base. A total of 31 of these current-sense amplifiers operate in parallel to create a 31-bit
digital output data word, which is multiplexed and driven off-sensor with no serialization. The max-
imum read time from the furthest cell is 150 ns and parallel data readout is typically operated at a
5 MHz rate. A full sensor readout, in which every register contains valid hit data (such as when op-
erating in hit override mode) therefore takes approximately 2.6 ms, and generates 50 kBytes of data.

2.10 Pixel test structures and additional test features

In addition to the main design presented above, the TPAC 1.0 sensor has three pre-sample test pix-
els on the periphery which have been implemented to allow access to internal nodes for evaluation.
The test pixel designs correspond to both the quadrant 2 and 3 variants but also include additional
analogue buffers to monitor internal analogue signals in the pixel circuit. These facilitate evalu-
ation of the performance of monostable circuits, comparators, trim adjustment of threshold, and
the analogue front end circuits for the pre-sample pixel architecture. The signal pulse and the re-
set sample are available for two adjacent pixels, and the internal differential comparator output is
available from one of these. A third pixel allows evaluation of other in-pixel circuits, including
the two monostables and the full comparator chain. The circuit is shown in figure 11. These test
pixels are included at the edge of the main pixel array. Due to a lack of time before submission,
no pre-shaper test pixels were implemented. However, a pre-shaper test pixel corresponding to the
quadrant 1 variant was included on TPAC 1.1, again with internal signal connections. This is also
shown in figure 11.

In addition, key digital signals, such as control clocks and the least significant bit of the multi-
plex address and time-code are driven off-sensor at the farthest point from their initial distribution.
This debug feature allows the timing of critical signals to be evaluated during operation.

All bias currents are independent and are generated off-sensor to evaluate the performance of
sub-circuits in different operating modes. The two pixel architectures can be operated indepen-
dently, with separate threshold voltage, bias settings and power-down control.

2.11 DAQ system and operation

For all the tests described in this paper, the sensor was mounted on a custom-designed PCB and
read out with a USB-based readout system using a custom software data acquisition (DAQ) system.

The PCB design was compatible with both TPAC 1.0 and 1.1 sensors. It included 31 DACs
to allow all the bias voltages and currents for the sensor to be software controlled. It also held a
temperature sensor. Each PCB was given a unique ID through a dip switch which could be read
out to the DAQ. Below each sensor, a hole approximately 8 x 8 mm? was cut in the PCB to allow
access to the substrate for use with a laser (see section 5.3). An additional notch approximately
1 x 1 mm? was also cut below the test pixel structures, again to allow illumination by a laser. The
PCB hole left a strip approximately 1 mm wide for gluing the sensor to the PCB. Around 20 sensors
were mounted on PCBs and no mechanical failures of this glue joint were found. Conductive glue
was used to allow the substrate to be optionally grounded. The sensor required 265 wirebonds to
connect to the PCB. The PCB is shown in figure 12.

Three 64-way flat ribbon cables connected the sensor PCB to a generic readout board, the
USB_DAQ card, which provided the USB interface to the computer. The USB_DAQ card required
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Figure 11. Test pixel circuits for pre-shape on TPAC 1.1 (upper) and pre-sample on TPAC 1.0 (lower),
showing the internal nodes which are accessible externally.

Figure 12. Photograph of the PCB used to hold and operate the sensor. The hole with the sensor mounted
on the lower side is just right of centre.
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firmware specific to the TPAC 1.0 or 1.1 sensor to generate the required control and timing signals,
as well as the configuration load and readback, and the data memory readout. It also controlled the
PCB DAC settings and performed the temperature and PCB ID readout.

The sensor was operated with fake “bunch trains” to mimic ILC operation. A bunch train
consists of a period of data acquisition where pixel hits are registered and timestamped according
to a “bunch crossing” clock. Following a fixed number of bunch crossings, the data acquisition is
halted and the pixel hits are read out. The timing structure of the bunch train was controlled by
the USB_DAQ and was to a large extent under software control. For all following measurements,
the operating parameters for the bunch train used were a 400 ns period bunch crossing clock and a
number of bunch crossings up to the maximum timestamp storable in the memory of 8192.

3 Pixel charge diffusion simulation

The signal from a minimum ionising particle (MIP) arises as the particle passes through the sen-
sor. Physically, electron-hole pairs are created throughout the silicon sensor. Within (or near) the
epitaxial layer the liberated electrons are able to diffuse to the collecting diodes and hence be seen
as signal. Some electrons from the substrate close to the epitaxial layer can also diffuse into the
epitaxial layer and so be collected. However, electrons in the deep P-well implant will mostly be
lost. Overall, for a MIP at normal incidence to a sensor with a 12 um thick epitaxial layer and
deep P-well, around 1100 e~ will be available to contribute to the signal. Due to diffusion from the
substrate, a 5 um thick epitaxial layer will yield around half this value. Once liberated, the charge
diffuses and may be absorbed by the collection diodes of the neighbouring pixel. In addition, other
N-well structures can collect charge and hence charge will be lost in terms of being signal. This
last effect is the reason for which the deep P-well implant was developed.

As described in section 4.1, for calibration, the sensor was exposed to an intense 3Fe source.
This isotope produces gamma radiation including prominent K lines with photon energies close
to 5.9keV. There is also a lower rate of Kg photons, with energies close to 6.5keV. Photons of
these energies can interact in the silicon, again causing ionisation, and will liberate all the signal
charge within a small O(1 um?) volume. In most cases when the photons convert in the epitaxial
layer, a significant fraction of the charge will diffuse out of the pixel and be absorbed in the neigh-
bouring pixels, being lost as signal to the hit pixel. Hence only a small fraction of the signal will
be collected by the diode and a spread of signal sizes will be observed, depending on the details
of the charge diffusion. However, a small number of the photons will interact directly inside the
signal diodes themselves. In this case, all the charge liberated, around 1620 ¢, will be collected
by the diode and a fixed signal size will be observed.

Another difference between an interaction in the diode and elsewhere in the epitaxial layer
is the speed of charge collection. Charge deposited in the diode should be collected quickly, of
the order of 1 ns, while the diffusion of charge from the epitaxial layer takes of order 100 ns. The
diffusion time is convoluted with the preamplifier response and signal shaping circuit, which results
in a slower rise time and lower peak for longer collection times. Figure 13 shows the simulated pre-
shaper circuit response resulting from the different signal time characteristics. A diode interaction
signal is found to be around 15% larger than a more general epitaxial layer interaction, for the same
total charge collected.
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Figure 13. Simulated reponse of pre-shape circuit to pulses of the same magnitude but with varying col-
lection times. The pulse charge is injected at 13 us on the time axis and collected with an exponential rise,
with time constants of 0 ns (black, dashed), 25 ns (green), 50 ns (blue) and 75 ns (red). Zero corresponds to
a diode interaction while a typical epitaxial interaction corresponds to the 50 or 75 ns curve.

Figure 14. Diagram of the GDS simulated volume for the pre-sampler pixel charge diffusion modelling;
without deep P-well (left) and with deep P-well (right).

3.1 Detailed simulation

To estimate the signal spread quantitatively, a simulation of the sensor pixel was performed using
the Sentaurus [14] package. The pixel GDS design file was used as input to the simulation, ensuring
the details of the pixel were correctly simulated. Figure 14 shows the pre-sampler pixel simulated.
The pre-shaper diffusion is expected to be very similar as the diodes are placed identically in the
two designs; this is particularly true for the deep P-well sensors as very little charge is expected to
be absorbed by the circuit N-wells. Only modelling of the diffusion of MIP signals was performed
with this detailed simulation.

Charge equivalent to that expected for a MIP passing perpendicularly through the epitaxial
layer was deposited at various locations within the pixel and then its diffusion was simulated to
investigate where it was absorbed or lost. A 3 x 3 array of pixels was simulated to allow for neigh-
bour pixel charge collection. The simulation assumed a 15 yum epitaxial layer and simulated the
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Figure 15. Layout of the 21 points (black circles) used for MIP charge deposits in the Sentaurus simulation.
The red circles indicate the four diode positions.

volume from the sensor surface down to 32 um below the surface (150 x 150 x 32 um? in total). A
correction is made for all results shown below to account for the difference between the 15 yum epi-
taxial thickness assumed in this simulation and the 12 ym eventually implemented in the fabricated
Sensor.

The simulation was CPU-limited so only a small number of MIP impact positions were mod-
elled. Because of the approximate eight-fold symmetry of the sensor, all positions simulated were
within a triangle with the pixel centre, corner, and side centre as its three corners. Within this
triangle, the positions simulated were spaced 5 m apart, resulting in 21 points in total. Using the
approximate pixel symmetry, these could be translated and rotated to give a 5 um regular array
across the whole of the central pixel. Figure 15 shows the layout of the 21 points simulated.

The simulation results are shown in figure 16 for sensors with and without the deep P-well
implant. Here the fraction of the signal charge predicted in all nine pixels of the 3 x 3 array is
shown. It is seen that the signal in all cases is predicted to be significantly larger with the deep P-
well implant. In particular, in the central pixel, the fraction of charge seen depends on the position
of the incident particle. The signal varies between 20% and 50% with the deep P-well implant,
with an average over the pixel of 30%. However, without the deep P-well implant, the central pixel
signal can be less than 1% and only reaches a maximum of 30% when near the diode. The average
for this case is less than 10%. Similar large differences are seen for the neighbouring pixels also.

3.2 Diffusion simulation

The Sentaurus simulation was too time-consuming to model a large number of charge deposition
points, so a simplified model was used for studying bigger samples of points and for modelling the
3Fe calibration response. A simple diffusion equation

dp
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ot p
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Figure 16. Sentaurus simulation of the MIP charge (in unit of ¢™) seen as signal for no deep P-well (left)
and deep P-well (right), as a function of the MIP impact position relative to the centre of the pixel. The
simulation assumed a 15 um thick epitaxial layer, but the values shown are scaled to those expected for a

12 um layer.
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Figure 17. Simple diffusion simulation of the amount of a MIP charge (in unit of ¢™) seen as signal for no
deep P-well (left) and deep P-well (right), as a function of the MIP impact position relative to the centre of
the pixel. The epitaxial layer thickness is 12 um in these cases.

was numerically solved, using an forward-time/centre-difference (FTCD) method, to model the
charge density p within the epitaxial layer. The diffusion coefficient D, and parameters to model
the charge collection with and without deep P-well implants at the surface, were adjusted to agree
with the results of the Sentaurus simulation for the above 21 points. The simulation was extended
to a 5 x 5 array of pixels and both a 5 or 12 um epitaxial depth using a 1 um grid. Thus a total
of 250 x 250 x 5 or 250 x 250 x 12 volume elements were used. The MIP deposits were again
simulated within the same triangle as shown in figure 15 but with 1 um spacing, giving a total of
351 points. Figure 17 shows the equivalent distributions to figure 16 for MIP deposits resulting
from the simple diffusion model, showing the much finer spacing. Only the central 3 x 3 pixels are
shown, although the simulation volume extended beyond this region. Figure 18 shows the same

but for the 5 um epitaxial layer thickness.
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Figure 18. Simple diffusion simulation of the amount of a MIP charge (in unit of ™) seen as signal for (left)
no deep P-well and (right) deep P-well, as a function of the MIP impact position relative to the centre of the
pixel. The epitaxial layer thickness is 5 tm in these cases.
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Figure 19. Simple diffusion simulation of the fraction of the charge seen as signal for a deep P-well pixel,
as a function of the >>Fe photon impact position relative to the centre of the pixel at three different depths
in the epitaxial layer. Left: furthest from the diodes, centre: in the middle, right: nearest to the diodes. The
epitaxial layer thickness is 12 um in these cases.

For modelling the response to the > Fe calibration photons, the charge deposits need to be
simulated not only over the area of the pixel but also at various depths in the epitaxial layer. The
simple diffusion model was used to estimate the spectrum of the charge collected for randomly
positioned charge deposits (as expected for *>Fe) throughout the volume of the epitaxial layer.
Examples to illustrate the depth dependence are shown in figure 19.

As can be seen in figure 19, the simulation indicates that for the deep P-well cases, there is a
broad “plateau” near the centre of the pixel, effectively independent of epitaxial layer depth, where
an approximately constant fraction of the deposited charge is collected. This spectrum of observed
charge is shown in figures 20 and 21, which show the constant fraction is between 0.3 and 0.4,
meaning that a peak corresponding to around 30-40% of the 3Fe energy would be observed. This
fraction is only weakly dependent on epitaxial layer depth. (Note, the full energy peak resulting
from hits within the signal diodes is not due to diffusion and so is not seen with this simple model.)
For pixels with no deep P-well, then no such plateau peak is seen in the simulation, so it is expected
that only the full energy peak should be visible in this case. Also, for no deep P-well, the absolute
rate of photons with a significant fraction of the full energy is expected to be significantly lower.
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Figure 20. Simple diffusion simulation of the fraction of the >>Fe charge seen as signal for a uniform
distribution of photon hit positions throughout the epitaxial volume for no deep P-well (left) and deep P-
well (centre). The y-axis represents the epitaxial layer interaction volume of a pixel which results in the
given signal fraction. The filled red histogram shows the fraction of signal charge absorbed in the central
pixel, while the white histogram shows the spectrum of charge absorbed by the centre pixel as well as the
eight neighbouring pixels. Right: overlaid comparison of the total distributions from the left and centre plots
for simulated deep P-well (solid, red) and non-deep P-well (dashed, blue) spectra for an equal irradiation
exposure. The epitaxial layer thickness is 12 ym in these cases.
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Figure 21. Simple diffusion simulation of the fraction of the 3Fe charge seen as signal for a uniform
distribution of photon hit positions throughout the epitaxial volume for no deep P-well (left) and deep P-
well (centre). The y-axis represents the epitaxial layer interaction volume of a pixel which results in the
given signal fraction. The red histogram shows the fraction of signal charge absorbed in the central pixel,
while the white histogram shows the spectrum of charge absorbed by the centre pixel as well as the eight
neighbouring pixels. Right: overlaid comparison of the total distributions from the left and centre plots
for simulated deep P-well (solid, red) and non-deep P-well (dashed, blue) spectra for an equal irradiation
exposure. The epitaxial layer thickness is 5 im in these cases.

The volume for photon interactions which give the plateau constant value for the deep P-well
case is a significant fraction of the epitaxial volume. For a 12 um epitaxial layer thickness, it is
estimated from the simulation to be around 30% of the 50 x 50 x 12 um? pixel volume, i.e. around
10,000 um?3. For the 5 um epitaxial layer thickness case, it is around 25%, i.e. 3000 um>. The
volume within the diodes which would give a signal corresponding to the total Fe energy is
estimated to be approximately a circle of diameter 5 tm and depth 1 um, giving a total volume for
the four diodes of around 100 um?3. This is independent of epitaxial layer thickness. Hence, the
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Figure 22. Typical deep P-well test pixel oscilloscope signal when exposed to >>Fe photons. The solid red
line shows the result of the fit performed to extract the peak and time constants of the signal.

plateau region is expected to be much larger, by around two orders of magnitude, than the diodes
for a 12 um epitaxial layer depth and somewhat smaller for a 5 um epitaxial layer depth. Therefore,
two peaks are expected from the > Fe exposure; a large one around 0.3 of the photon energy and a
much smaller one at the full photon energy.

4 Test pixel performance

4.1 Test pixel performance and calibration

As described in section 2.10, the sensors included test pixels outside the 168 x 168 “bulk” pixel
array. Several internal nodes of these pixels are accessible externally, allowing analogue measure-
ments of their levels.

A low noise pre-amplifier was connected to the output node from the shaper, the “Test Output
Signal” shown in figure 11 for the pre-shaper on TPAC 1.1, and the signals were measured on a
digital oscilloscope with a 5 GHz sampling rate. This system was used to measure the peak sig-
nal seen when the test pixels were exposed to the > Fe source. A powerful GBq source allowed
a sufficient rate of source hits that a calibration signal could be seen in the individual test pixels.
Two different oscilloscope trigger threshold levels, 30 and 120 mV, allowed the plateau and full
energy peaks, respectively, to be measured separately. An exponential rise was convoluted with
the pixel circuit response (the pre-amplifier and CR-RC shaper) and the resulting functional form
fitted to the oscilloscope data to extract the peak magnitude, the exponential rise time and the start
time of the signal for each trigger. A typical oscilloscope output and the resulting fit are shown
in figure 22. The shape is seen to have similar characteristics in terms of the peaking time to the
simulated response shown in figure 4.

The spectra of the magnitude of the fitted peak signals observed in 12 um epitaxial layer
sensors are shown in figures 23 and 24. The full energy peaks are similar with or without deep
P-well as these mainly result from photon interactions in the diode, where there is no deep P-well
implant. Comparing the plateau peaks to the simulation, the data spectra correspond roughly to an
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Figure 23. Test pixel peak signal spectra when exposed to > Fe photons for deep P-well (solid, red) and
non-deep P-well (dashed, blue) sensors. Left: peaks of >>Fe signal around plateau energy, normalised to
equivalent exposures. Right: peaks of >>Fe signal around full energy; the prominent peaks around 225 mV
are from Ko photons of energy 5.9 keV, while the smaller peaks around 250 mV are due to Kg photons of
energy 6.5 keV. These spectra are from sensors with a 12 um thick epitaxial layer.
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Figure 24. Test pixel peak signal spectra when exposed to Fe photons for deep P-well (solid, red) and
non-deep P-well (dashed, blue) sensors. Left: peaks of >>Fe signal around plateau energy, normalised to
equivalent exposures. Right: peaks of > Fe signal around full energy; the peaks around 215mV are from K,
photons of energy 5.9 keV, while the smaller peaks around 235 mV are due to Kg photons of energy 6.5 keV.
These spectra are from sensors with a 5 um thick epitaxial layer.

equivalent charge fraction as shown in figure 20, and 21. For the 12 um epitaxial thickness case, it
is seen that the plateau peak position and the relative rates for deep P-well and no deep P-well are in
reasonable agreement, although the plateau peak width is clearly much broader in the data. Given
the simple level of simulation used, this is not unreasonable. For the 5 um epitaxial thickness case,
there is no clear peak; the absence of the peak predicted by the simulation is not understood.

The noise measured by the oscilloscope is 3 mV. Both this noise and the full energy peak
positions are consistent both with and without deep P-well , showing the deep P-well implant does
not affect the circuit performance. For the deep P-well, 12 um epitaxial thickness, the full peak
corresponds to 1620e™ charge, so the noise is equivalent to 22e~. Allowing for a gain of 0.8 in the
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Figure 25. Deep P-well test pixel signals when exposed to >>Fe photons, showing the number of events
(indicated by the colour scale) seen as a function of the signal peak value and exponential time constant,
both extracted from a fit. Left: the plateau region. Right: the full peak region. These data are from a sensor
with a 12 um deep epitaxial layer.

external low-noise preamplifier, the pre-shaper gain is measured to be 160V /e~. These values
are completely consistent with the expectations given in section 2.3. In addition, the ratio of the
plateau to full peaks is 34% which is in reasonable agreement with the simple diffusion simulation,
see figure 20. Given the approximations used in this model, the agreement is regarded as sufficient
to be confident that the source of these peaks is understood.

As a final check of the origin of these peaks, figure 25 shows the correlation of the fitted
exponential rise time constants of the signals as a function of the fitted peak signal magnitude. The
full peak values have rise times of around 10 ns while the deposits resulting in the plateau peak
have a rise time of around 70ns. The strong correlation shows the highest peak values, which
correspond to the diode interactions, have the shortest time constant, as expected, while the plateau
signal, from lower in the epitaxial layer, has a slow collection time; see section 3.

S Bulk single pixel performance

5.1 Pedestals and noise

The performance in the bulk pixels is less straightforward to measure as there is no analogue read-
out available. However, the rate of hits in each pixel as a function of the applied threshold effec-
tively allows the integral of the analogue spectrum to be measured and hence the spectrum itself
can be estimated. The results in this section are based on performing such “threshold scans” and
measuring the response.

One further complication is that pickup was observed between pixels when O(100) were en-
abled and firing at the same time (see section 6.2). This is not a major problem when operating
the sensor for its design purpose as only O(10) pixels per sensor are expected to fire in each event.
However, for the basic performance measurements presented below, this pickup could prevent the
response of individual pixels from being measured. Hence to remove this sensor-wide effect, only
168 pixels were unmasked in any run for the following results, and hence 168 such runs were re-
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Figure 26. Typical pixel threshold scan for a pre-shape pixel.

quired for a complete threshold scan of the whole sensor. As shown in section 6.2, this number is
sufficiently small that pickup effects do not occur.

To select the 168 unmasked pixels, only one pixel of the 42 which shared SRAM memory
was unmasked in each run. In addition, runs were performed with only 19 bunch crossings per
bunch train. Both of these together ensured that the memory could never overflow and so distort
the threshold scan, even when very close to threshold.

The pixel comparator only fires when the input crosses through the threshold from below (see
section 2.3). In contrast to a level comparator, this means the comparator will not fire if the input
is far from the threshold with either polarity. Hence, a threshold scan performed with no external
stimulus will result in hits only when near the pixel pedestal. The results of such a scan for a typical
pixel are shown in figure 26. Here, the scan is specified in the (arbitrary) units of the DAC threshold
setting, called “DAC threshold units” (DTU) in this paper.

For the pre-shape threshold scan, the resulting distribution is well described by a Gaussian
and so can be characterised by the mean and the RMS. The mean gives the pedestal for the pixel
and the RMS gives the noise [15]. The distribution of the pixel mean and RMS values for the two
pre-shape quadrants (see section 2.3) of a typical sensor are shown in figure 27. It is seen that there
is a significant spread of pedestals within a quadrant. The pedestal spread RMS is around 20 DTU
and is the same for quadrants O and 1. This is much bigger than the noise on the pixels, which has
an average value of around 5 DTU for quadrant 0 and 6 DTU for quadrant 1.

The values of the pedestal and noise for each pre-shape pixel of a typical sensor as a function
of the position within the sensor are shown in figure 28, where the difference in noise for the two
quadrants is visible. The values of the pedestals and noise show no correlation with position within
each quadrant and their spreads appear genuinely random pixel-to-pixel. There is no correlation
between the pedestal and noise values.

The spread of pedestals can be reduced using the per-pixel trim setting. This allows a value in
the range 0-15 to be loaded to each pixel to adjust the pedestal position upwards. The effect of this
on the pedestal of a typical pixel is shown in figure 29. It is seen that there is a non-linear effect in
the response.
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Figure 27. Distributions of pedestals (left) and noise (right) for pixels in quadrants 0 (solid, red) and 1
(dashed, blue), in DAC threshold units (DTU), for a typical sensor. Pixels in these two quadrants are all of
the pre-shape design. All trim values were set to zero.
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Figure 28. Two-dimensional map of pedestals (left) and noise (right) for the two pre-shape quadrants of a
typical sensor. The lower half of each plot corresponds to quadrant O and the upper half to quadrant 1. The
colour-coded scale is in DAC threshold units (DTU) in both cases.

The spreads of pedestals after trimming a typical sensor are shown in figure 30. It is seen
that the RMS of the pedestals is reduced by a factor of around five. The resulting spread is a little
smaller than the size of the per-pixel noise and so gives a small but non-negligible contribution
to the apparent noise rate when setting a common threshold for all pixels. The ability to improve
on this effect is limited by the number of trim bits available. With four bits, then a granularity of
the trim of 16 values is possible. However, the total range of the uncorrected pedestals is around
100 DTU, so that even with careful matching of the trim range, the trim least significant bit would
be around 6 DTU. Two additional trim bits have been implemented in the next version of the sensor.
The average noise is unaffected by trimming, although the spread of the noise is slightly increased.
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Figure 29. Change of pedestal for a typical pixel as a function of the trim setting. The curve shows a
second-order polynomial fit to the data points, illustrating the response is non-linear.
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Figure 30. Distributions of pedestals (left) and noise (right) for pixels in quadrants 0 (solid, red) and 1
(dashed, blue), in DAC threshold units (DTU), for a typical sensor, following the determination of the
optimal trim values.

We investigated the pixel noise under a variety of external factors. The sensor substrate can
be grounded or operated with no explicit bias connection to the substrate. This could in principle
change any environmental noise pickup. The distribution of noise for a subset of pixels both with
and without the substrate being grounded are shown in figure 31. It is seen that leaving the substrate
unconnected has no significant effect on the noise. In addition, the sensor may be sensitive to light
and it is normally operated with a cover to keep it in the dark. However, the six metal layers used
effectively completely cover the top surface of the sensor so little light reaches the epitaxial layer.
Figure 31 also shows the noise distribution of the same pixels with and without a strong lamp being
shone on the top surface of the sensor. Again, there is no significant difference.
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Right: noise distribution with (solid, red) and without (dashed, blue) a strong light source shining on the
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Figure 32. Left: rate of hits as a function of the threshold setting. Right: numerical derivative of the rate
plot. The »Fe calibration signal is visible at around 190 DTU, as a shoulder in the left plot but as a clear
peak in the right plot. The epitaxial layer thickness is 12 um in this case.

5.2 Bulk pixel calibration

The calibration of the threshold setting in DTU to a physical scale was performed using an >°Fe
source using the same principle as described in section 4.1. The same high-rate source was used,
giving a sufficient rate of hits to calibrate individual pixels. A threshold scan was performed and
the rate plotted as a function of the threshold setting. A numerical derivative was then taken of this
rate plot to get the basic spectrum and so to find the calibration peak. The results for a typical pixel
are shown in figure 32. The observed peak corresponds to the plateau peak, as the full energy peak
is above the operating range of the comparator.

The peak positions (corrected for pedestal) for the pre-shape pixels measured in both quad-
rants 0 and 1 are shown in figure 33. The average signal for quadrant 1, 165 DTU, is significantly
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Figure 33. Distribution of > Fe signal peak position (left) and signal/noise (right) for pixels in quadrants 0
(solid, red) and 1 (dashed, blue).
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Figure 34. Two-dimensional map of > Fe peak position (left) and peak width (right) for the two pre-shape
quadrants of a typical sensor. The lower half of each plot corresponds to quadrant O and the upper half to
quadrant 1. The colour-coded scale is in DAC threshold units (DTU) in both cases. Pixels for which no peak
was measured are shown as white. The faint vertical line in the centre of the left plot corresponds to the
pixels bordering the dead area between the two readout regions, which has no deep P-well implant.

higher than for quadrant 0, 117 DTU, by around 35%, while the spreads of the signals for quad-
rants 0 and 1 are 11% and 10%, respectively. As shown above in figure 27, quadrant 1 also has a
higher average noise than quadrant 0, by around 20%, so quadrant 1 has a better signal/noise ratio
(averaging 25 compared with 22), also shown explicitly in figure 33.

The variations in the position and width of the peak measured are shown as a function of the
position in the sensor in figure 34. The differences of the two quadrants are clearly visible. How-
ever, within the quadrants, similarly to figure 28, there is no correlation between the gain or noise
and the position in the sensor.
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Figure 35. Typical threshold scan without (left) and with (right) the laser powered on. The right plot also
shows the fit to the error function (red line), from which the laser signal was determined to be 160 DTU in
this example.

For quadrant 0, the average peak position relative to the pedestal was found to be 117 DTU.
From section 4.1, this corresponds to 34% of the 1620 e~ of signal charge, i.e. 550e™, so this
calibrates 1 DTU to be 4.7 ¢~ . For quadrant 1, then 1 DTU is equivalent to 3.3 ¢~. This can be used
to interpret the noise measurements above. The average noise values of 5DTU and 6 DTU, for
quadrants O and 1 respectively, correspond to an equivalent in terms of signal charge of 23¢~ and
20e. Hence, the measured bulk pixel noise is compatible with both the test pixel measurements
and the predicted design value.

In terms of detection of MIP signals, then the typical signal in the pixel hit by a charged particle
is the plateau fraction of around 30% of the 1100e~ deposited, i.e. 350e™~. Hence, this corresponds
to an expected typical signal/noise ratio for MIPs of around 15.

5.3 Bulk laser signal response

The sensor was illuminated using a laser of wavelength 1064 nm. The laser enclosure contained
a computer-controlled moveable XY stage, on which the sensor PCB could be mounted. This
allowed the sensor to be moved in two dimensions below the laser, allowing a large number of
measurements which are described in this section. For these measurements, the signal was injected
into the bulk pixel area and the response measured using a threshold scan. A typical response
is shown in figure 35, where the laser signal is clearly seen. The actual size of the laser signal
was found by fitting the falling edge of the response curve to an integrated Gaussian (an error
function). In terms of the integrated Gaussian parameters, this gives a pseudo-analogue signal
response estimate from the mean and an estimate of the signal spread from the width. The absolute
intensity of the laser was uncalibrated so the signal size for the following measurements is arbitrary,
although it is similar to that expected for a MIP.

The laser must be focussed onto the epitaxial layer. This was done by focussing the microscope
optically on the substrate surface and then recording the observed laser signal size at various focus
depths relative to this. Figure 36 shows the results of such a scan, where there is seen to be a strong
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Figure 36. Laser signal size as a function of the focus depth relative to the optical focus position. A positive
value means the focus position was moved into the sensor.

dependence on the focus depth. The maximum signal was found to be 60 um into the substrate
relative to the optical focus. In addition, there is a range of only around £20 um where the signal
size is effectively unchanged. This sets a limit on the degree of tilt acceptable when performing
such laser measurements. A focus on pixels near one edge of the sensor will only be within this
tolerance for pixels near the other edge if the sensor is flat to around 2 mrad. For this reason, the
focus was checked when large movements were made and, when possible, only small movements
were then performed around this point.

The laser system was used to determine the relative gain of the pixels. By firing the laser into
the centre of each pixel in turn, then the signal size for each was determined. Figure 37 shows
the distribution of the observed laser signals and signal/noise ratios for a subset of pixels in the
two pre-shape quadrants. Comparison with figure 33 shows these results are consistent with those
from the >Fe measurements. Again a clear difference in both signal size (90 DTU and 130 DTU,
respectively) and signal/noise (18.4 and 20.6, respectively) for quadrants O and 1 was observed,
with quadrant 1 being higher in both cases. The signal size (i.e. gain) spread for quadrants 0 and 1
was found to be 12% and 14% respectively, which are slightly higher than, but consistent with, the
>Fe measurements. Because of the better signal/noise performance, only the quadrant 1 variant of
the pre-shape pixels was implemented in the next version of the sensor.

The laser system was also used to measure the charge diffusion so as to compare with the
simulation described in section 3.1. The laser was focussed to give a illuminated spot size of less
than 2 um and the stage could be moved with a 1 um precision, so that the charge could be gener-
ated accurately to match the positions of the 21 points shown in figure 15. Because the laser was
uncalibrated, the absolute fraction of the laser signal observed could not be determined, so only the
relative shape as a function of position is relevant. Figure 38 shows the results of these measure-
ments using sensors with and without deep P-well implants. Both sensors measured had a 12 um
epitaxial layer thickness. Bearing in mind that the simulation (shown in figure 16) does not include
the effects of the laser spot size or electronics noise, it is seen that the general trend of the data is in
quantitative agreement with the simulation and that the deep P-well increases the signal size signifi-
cantly. Overall, it is clear that the sensor without deep P-well implants gives a much smaller signal.

~31-



= 0 F

I~ T
g 35:, Quadrant 0 .’E‘_ 30; Quadrant 0
0 N Quadrant 1 -] L Quadrant 1
[] = - [
3 [ L
g 30 2 25
= £ £ r
o [ S
= F 2 f
2 25— r
a “7¢ C
E 20
S F L
Zz 20 L
C 15—
15 r
F 101
10— L
50 s
N I T = WAL AU DT L ST b
0 20 40 60 80 100 120 140 160 180 200 0 5 10 15 20 25 30 35 40
Laser signal (DTU) Laser signal/noise

Figure 37. Laser signal (left) and signal/noise (right) for quadrants O (solid, red) and 1 (dashed, blue).
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Figure 38. Charge seen as signal (in units of DTU) from laser for no deep P-well (left) and deep P-well
(right), as a function of the laser impact position relative to the centre of the pixel. These data are from a
sensor with a 12 um thick epitaxial layer.

6 Global sensor performance
Global aspects of the sensor performance were also studied and are discussed below.

6.1 Configuration load

The per-pixel five-bit configuration data were loaded and read back to check for bit errors. Each
load transfered 141 kbits into the sensor configuration registers. The load and readback cycle was
repeated 25,000 times and the data written and readback were compared. No bits were seen to have
been corrupted in this process. This sets an upper limit on the bit error rate of 1 x 10~ at 90%
confidence level.

6.2 Pickup between pixels

As mentioned in section 5.1, pickup was observed between pixels when large numbers fired at the
same time. For this reason, all the results described in section 5 were done with only a small num-
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Figure 39. Effect of pickup on a typical pixel with only the pixel enabled (left) and with all other pixels
enabled (right).

ber of unmasked pixels. Typical pickup behaviour is illustrated in figure 39 where the threshold
scan for a single pixel is shown with just that pixel unmasked and also with all pixels unmasked.
It is clear the distribution when all pixels are enabled is uncorrelated with the pedestal of the ac-
tual pixel being studied; it depends on the pedestals of the other pixels firing. (The sensor was
untrimmed in this case, and so the pedestals had a wide spread, as reflected in the width of the
distribution observed.) The scan with pickup has a much larger RMS and this has been used to
characterise the onset of pickup.

Many studies to analyse this effect were performed. It was found that the level of pickup
depended on the number of pixels unmasked but not their geometric positions relative to each
other. One example of these studies which shows this result clearly is shown in figure 40. In this
study, a single pixel on one edge of the sensor was unmasked. The RMS of this pixel from a
threshold scan was then determined as an increasing number of pixels were unmasked along the
other edge of the sensor, i.e. at the furthest point from the single pixel. It is seen that pickup on the
isolated pixel has the same behaviour as that of all the pixels along the far edge. Hence, the pickup
is seen to be unrelated to position.

The pickup is not due to coupling directly between monostables as this would not be affected
by masking pixels. It is thought that the pickup is caused by a power mesh being shared between the
pre-shape comparator and monostable components. If a large number of pixels fire and give hits in
the monostables, the common power level droops and causes the comparators in other pixels to fire.
The power meshes to these two components have been separated in the next version of the sensor.

It is important to note that this power coupling effect does not affect normal operation of the
sensor. The effect requires around 1% of the pixels to fire simultaneously. Hence, it is only when
doing sensor tests involving threshold scans with low thresholds, such as a pedestal determination,
that large numbers of pixels fire simultaneously. When operating as a particle detector, then the
threshold setting is usually at least five times the noise value so that the noise hit rate is much
smaller than 1%. This means that only small numbers of pixels fire at any one time and hence the
power droop is never large enough to cause spurious hits. In this mode, all pixels can be operated
unmasked and the sensor has high efficiency.
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Figure 40. Onset of pickup, as measured by the RMS determined from a threshold scan, as a function of the
number of unmasked channels. Each of the 16 lines corresponds to a single pixel, one of which (in red) is
on the opposite side of the sensor to the others. It is seen that pickup starts on most pixels when around 300
pixels are unmasked and it is independent of the pixel position.

6.3 Hit corruption

The “hit override” mode described in section 2.8 allows hit data to be stored in the sensor memory
without requiring any pixels to be above threshold. In this mode, all seven banks of pixels in each
row of 42 pixels will store data for every timestamp and hence the 19 data registers will be filled
within the first three timestamps.

This test mode results in predictable values for the MUX address, timestamp and row address
for every data word stored. These can be compared with the values read out to check for corruption.
(Note, the six-bit hit data themselves are not predictable as noise can cause them to be randomly
set.) A low level of corruption, at around 0.1%, was seen for the MUX address and timestamp bits,
although the actual rate varied from sensor to sensor. This was traced to a design fault; the signal
to write to the SRAM did not have a wide enough voltage range to guarantee the value would be
written correctly. The rate of corruption was eliminated by applying an external voltage level of
2.7V to increase the range and this was used for all the results shown in this paper. This design
fault has been corrected in the next version of the sensor.

7 Conclusions

We have produced a test CMOS sensor which demonstrates much of the basic functionality re-
quired for a binary ECAL. Test results show one of the two pixel designs functions close to the
expected level. Gain and noise values from both test and bulk pixels are very similar to those
predicted by the design simulation. Also, the signal charge spread between pixels is close to expec-
tations from the pixel simulation. As part of the sensor development, we worked with the CMOS
foundry to develop the INMAPS process, which enables us to use a deep P-well implant to shield
the signal charge from the active PMOS circuit elements. Measurements show this improves the
signal collection by a factor of more than three, without affecting the gain or noise. This implant
makes the sensor viable.
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This work will continue with a new sensor, TPAC 1.2, which has been designed and fabricated.
The new sensor contains only the pre-shape quadrant 1 pixel design, which was shown to have the
better signal-to-noise ratio, modified to have the trim range extended from four to six bits. It also
implements several fixes, such as the decoupling of the comparator and monostable power meshes
and correcting the SRAM memory write corruption. Small adjustments have been made to the pixel
layout to improve the pixel uniformity for noise and gain. This sensor is the same size as TPAC 1.0
and 1.1 and has the same number of pixels. It is I/O compatible and so can use the same sensor
PCB and DAQ system. Results from the new sensor are expected to be reported in the near future.
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