MAPS award and issues

Paul Dauncey

Imperial College London

MAPS award

- Modified proposal spread over four years: FY05/06 to FY08/09
 - Delayed by ~9 months compared to original proposal
- Effort
 - RAL/ID; RT 1SM/year (for all 4 years), JC 3SM, 12SM, 12SM, 9SM
 - RAL/PPD; MT 1SM/year (for all 4 years), GV 5SM/year (for all 4 years), new RA 12SM for last 2 years
- Money
 - Equipment and consumables; £2k, £4k, £105k, £156k
 - Travel; £1k, £5k, £7k, £17k
- Obvious constraints
 - Cannot start design full-time until Jan 2006 (although...)
 - Cannot be sure we can pay for first fabrication until Apr 2007 and second fabrication until Apr 2008 (although...)
- Implies a real delay of ~12 months

Original schedule

		FY	5/6			FY	6/7			FY	7/8			FY	8/9	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Feasibility study	=															
Design 1		=	=	=	=											
Fabrication 1					=	=										
Basic tests 1						=	=									
Detailed tests 1							=	=	=	=						
Design 2							=	=	=							
Fabrication 2									=	=						
Basic tests 2										=	=					
Detailed tests 2										=	=	=				
Beam test PCB								=	=	=	=					
Beam test												=				

Possible schedule given constraints?

		FY	5/6			FY	6/7			FY	7/8			FY	8/9	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Feasibility study	=	=	=													
Design 1 (+6M)				=	=	=	=	=								
Fabrication 1 (+12M)									=	=						
Basic tests 1										=	=					
Detailed tests 1											=	=	=	=		
Design 2											=	=	=			
Fabrication 2													=	=		
Basic tests 2														=	=	
Detailed tests 2														=	=	=
Beam test PCB												=	=	=	=	
Beam test																=

ILC parameters

- Exact beam timing parameters not yet defined
 - Assume close to previous ("TESLA") design
 - Beams collide rapidly within a quick burst ("train")
 - Long dead time between trains
- Assume timing as follows
 - Beam collision rate within train = 5MHz, i.e. 200ns between collisions
 - Number of collisions within train = 5000, i.e. train is 1ms long
 - Train rate = 5Hz, i.e. 199ms between trains; 0.5% duty cycle
- Rate of signals
 - ILC is not like LHC; rate of physics processes is small
 - Most collisions give nothing, but when reaction does happen, many adjacent channels will be hit
 - Expected rate not very well known; needs detailed simulation modeling
 - Assume average $\sim 10^{-6}$ hits/pixel/crossing, which is ~ 0.005 hits/pixel/train

MAPS concept for ILC

- Divide wafer into small pixels
 - Each has comparator and memory
- Discriminate pixel signal for every collision within a train
 - Gives binary value for each collision
- Record collision numbers (timestamps) each time above threshold
 - Timestamps can have values up to 5000, i.e. 13 bits
 - Store result in memory during train up to some maximum number of timestamps
- Read out all timestamps in dead time before next train
 - Ensure total readout completed before next train
- Alternative: sum number of hits over ~1×1cm² "pad"
 - Report out number of hits per pad per collision
 - Degraded information but lower data volume

MAPS technology

- How big should the pixels be? How thick should the epi be?
 - Physical particle density sets maximum around $50 \times 50 \mu m^2$ area but smaller would be better with respect to saturation from multiple hits/pixel
 - Want to minimise charge sharing between neighbours (crosstalk) but maintain high efficiency within pixel
 - Want to maximise signal in epitaxial layer; 15µm feasible?
- How low can the noise hit rate be made?
 - Would like to be comparable with physics rate $\sim 10^{-6}$ hits/pixel/crossing
 - Implies S/N of at least 10
- Single Event Upset (SEU)
 - What are the failures due to SEU? What is the rate of SEU?
- How much memory can fit into a pixel?
 - Area required for each bit? $2 \times 2\mu m^2$ area?
 - Up to 16 timestamps/pixel should be easily sufficient; ~30 bytes

Power issues

- Power and cooling are critical issues
 - Detector would be very compact and inaccessible
- Should be comparable to alternative technologies
 - I.e. standard silicon diode wafer and preamplifier chip
 - Chip dominates ~1W/wafer (i.e. for MAPS ~ 10^7 pixels ~ 16×16 cm²)
 - Averages to 5mW/wafer if only powered on during train
- MAPS power dominated by comparator (?)
 - Single comparator ~ $2\mu W$, gives 20W/wafer
 - Averages to 0.1W/wafer if only powered on during train
 - To reduce further, need to only power on comparator when needed
- Issues are
 - Comparator stability and reproducibility
 - Comparator settling time

Thin profile and dead area issues

- MAPS detector also needs to be
 - Thin profile (to be compact)
 - Few dead areas (to be efficient)
- Need wafers to be closely packed with no protrusions
 - Implies no wire bonds from edges; they give dead space between wafers as well as thickening detector
 - Can all contacts be placed on top, i.e. like BGA components?
- No back contacts on wafer
 - Can wafer operate with substrate not grounded?
- What will be the fractional dead area?

Other questions

- Require bad pixel masking to reduce data volume
 - Load mask as configuration data before data taking
 - What rate of bad pixels is likely?
- How is wafer comparator threshold set?
 - DAC(s) on wafer?
 - Adjustable at what granularity in terms of pixels?
 - How uniform will the pixels be?
- What I/O rate can wafer output?
 - Needs to drive signals over ~1.5m PCB to controller FPGA
- Need high-tech PCB developments also
 - Large PCB (~1.5m) or "flat" join of smaller PCBs
 - PCB "other side" components embedded flush (or do without)

Physics simulation work is also needed

- Need quantitative answers to many questions
 - First thing is to write a realistic physics simulation of a MAPS including the thin sensitive layer
- What is the rate from beam interactions in the pixels?
 - If too high, then the data volume would be prohibitive
- What pixel size is really needed?
 - Is 50×50 μ m² sufficient?
 - Would we see saturation effects from multiple tracks per pixel?
- What is the requirement on noise in the pixels?
 - How often can we tolerate a fake hit in a pixel?
 - Signal/noise of >10 could give 10⁻⁶ probability of fake hit, if Gaussian
 - Is one fake in every 10⁶ samples good enough for physics?
 - This impacts both resolution on the shower energy and pattern recognition; which is the more critical?

Simulation work (cont)

- What is a tolerable **inefficiency** per pixel?
 - The surface readout electronics may absorb some charge
 - May be a localised inefficiency; is this acceptable?
 - Does it affect resolution or pattern recognition more?
- What rate of **crosstalk** is acceptable?
 - Diffusion means tracks near pixel edges will share charge with neighbour
 - Better to have low threshold and hence two hits, or high threshold and hence zero hits?
 - What rate of sharing is tolerable?
- What improvement is achieved with a 1mm gap reduction?
 - Drive to thin detector
 - Is this significant for shower separation?

Previously discussed pogramme

- 3.5 year programme to validate (or dismiss!) concept
 - Produce some prototype MAPS and test whether they work, in terms of signal size, noise rate, stability of threshold/pedestal, etc.
 - Put in a beam test for further checks, including single event upsets
 - Plan for two iterations of wafer manufacturing
- First iteration will have several different designs
 - Two? Nine?? All share a $\sim 1 \times 1$ cm² (or smaller) area
 - Test various choices for comparator, readout, reset, etc.
- Second iteration will be a single design
 - Use modification of the best design from first iteration
 - Make 2×2 cm² area devices; standard commercial size
 - Would get standard run of six wafers, each holding ~50 sensors
 - Even allowing for bad yield, would be able to make several layers of e.g. 10×10 cm² area for a beam test

Possible schedule

		FY	5/6			FY	6/7			FY	7/8			FY	8/9	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Feasibility study	=	=	=													
Design 1 (+6M)				=	=	=	=									
Fabrication 1 (+12M)								=	=							
Basic tests 1									=							
Detailed tests 1									=	=	=	=				
Design 2										=	=					
Fabrication 2												=	=			
Basic tests 2													=			
Detailed tests 2													=	=	=	=
Beam test PCB											=	=	=	=		
Beam test															=	=