Power issues

- Target power level stated in requirement was $1\mu W/mm^2$
 - This is averaged over whole period of operation with ILC bunch timing
- It needs to be competitive with analogue preamplifier ASIC
 - I asked Christophe de la Taille (the ASIC designer) about this during the CALICE meeting at DESY last month
 - Quoted target for ASIC is 10mW/channel at continuous power
 - Each channel corresponds to a 1×1 cm² silicon diode pad
 - Power cycling during train gives factor of 100 reduction on average
 - Total is then 100μ W/channel = 100μ W/cm² = 1μ W/mm² L
- MAPS comparator is roughly 1µA from $2.5V = 2.5\mu W$ (?)
 - For $50 \times 50 \mu m^2$ pixels, this is 400 pixels/mm²
 - Equivalent to 1mW/mm^2 at continuous power; factor 1000 needed
 - 10⁴ crossings per train and a train every 100ms is 10⁻⁵ sec/crossing average
 - For factor 1000 reduction, need comparator on for only 10^{-8} sec = 10ns
 - Smaller pixels (or more comparators per pixel) reduces this time accordingly

Buffer overflows

- Original concept
 - A number of memory locations per pixel, e.g.16 locations
 - Each pixel has separate counter for number of locations filled
 - Each time a hit above threshold is seen during train, timestamp recorded and pixel counter incremented; needs counter logic for every pixel
 - Buffer overflows if more than e.g. 16 hits in one train
 - Probability of N hits has Poisson distribution
- Jamie's suggestion
 - Have memory locations per pixel but no counter
 - Subdivide train into, e.g. 16 subtrains with one location per subtrain
 - Timestamp of any hit during train written into location for that subtrain
 - Single counter increments subtrain number globally; need counter logic only once
 - Overflow occurs if more than one hit in any subtrain
 - Number of subtrain overflows has binomial distribution

Buffer overflows (cont)

- Depends on mean number of hits per train
 - Within ~10⁴ bunch crossings per train and a noise rate of 10⁻⁵, then mean number per train is 0.1
 - For target noise rate of 10⁻⁶, then mean number per train is 0.01
- Blue below is original, pink is new scheme

- New scheme only falls slowly with number of locations
 - Probability of overflow ~ mean*mean/ $2*N_{locations}$

"Long" PCB design

- Baseline (and MAPS) design needs ~1.5m PCBs
- Roughly 30cm wide
- As thin as possible

- Thin PCB by embedding components?
 - Puts even more incentive on wirebond-less MAPS connections

