
OPIC Investigations

ADC Linearity etc

Problems reported by Users

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

450

ADC value

P
ix

el
 c

ou
nt

s
OPICH1499.mi3

MS=
44
SD=
2.64575
PN=
408

Fig. 9 One frame (No. 499) (64×72 pixels) count to output distribution
with ADC limit of (2200, 2712) ADU (background).

Comparator’s current=173 uA, second OPIC device.

Problem solving
1) On-Chip gray-code signal is coupling to the sensitive charge

storage/diode node in the pixel, primarily through feedback capacitance
from the comparator when switching. This can be minimised by
increasing the current in the source follower (better able to reject coupling
onto its output node) and reducing the current in the comparator (slower
switching reduces charge injection).

2) Each of the Gray-code bits seem to couple to the ADC result, not just a
single dominant bit that could be isolated. A test code (‘JCODE’), of 64
words was developed that always flipped two bits at the same time in
opposite directions to minimise overall charge injection. Promising
results! (Every code word contains 4 ones and 4 zeros)

3) But: when using the ‘JCODE’, the software reports a high proportion
(~15%) of erroneous codes (codes containing 3 ones and 5 zeros,
indicating the zero-to-one transition is not always stored in the time
available). This suggests the on-chip buffering is inadequate to drive the
full column fast enough.

Solution 1: New Bias Settings

SF_BIAS

COMP_VREF

250uA50uA

100uA100uA

NewOriginal
Can also be
reduced for

improvements,
50uA min.

Solution 2: New coding scheme

JCODEGRAYCODE

DAC step size = 2: 64 codes (steps) DAC: 2100 à 2228
Histogrammed data relates to 500 frames, centre region: 52x52

Bias settings: COMP_VREF=100uA. SF_BIAS = 250uA

Code 66 is used
to count the

number of data
parity errors

Solution 3: Error detection

a) Use new coding scheme, all codes have 4 ones and 4 zeros

b) Use a 7-bit gray code with 1 parity bit

For full-scale ADC (DAC step size ~16)

• Charge coupling is minimal for large DAC
steps, so standard gray code can be used.
Existing data taken is likely to contain errors
(maximum numerical error = one ADU)

• Could be improved by adding a parity bit to
the conversion (reduces ADC to 128 codes, 7
bit) but full range could be achieved by re-
writing the ADC routine to use both in-pixel
registers, restoring 8 bit conversion.

For fine ADC (DAC step size ~2)

• Charge coupling is dominant at such a
fine voltage sweep, so JCODE should
be used to minimise charge injection

• Conversion is limited to 64 codes

• Invalid data can be discarded for
device characterisation, noise
measurements etc.

‘JCODE’
example:
4 bits

0011

0101

0110

1001

1010

1100

0011

0101

1001

0011

1010

1001

0110

1010

1100

0110

0101

1100

6 valid codes exist
(equal # 1s and 0s)

A valid sequence

