LCWS physics analysis work

Paul Dauncey

Programme of studies

- The list shown previously
 - Detailed sensor level simulation
 - Understanding of sources of resolution
 - Variation of resolution with parameters
 - Linearity and resolution
 - PFA "no harm" confirmation
 - PFA improvements using fine granularity
- Not many volunteers; need to assign names today
 - Work needs to be done by at latest the weekend before LCWS

Sensor simulation

- Needed to decide on the spacing size
 - Yoshi fixed a Mokka version
 - Anne-Marie did spacing study and found no threshold to GEANT4 small subpixel bug
 - Decided to stay with $5\mu m$ spacing
- Now allows
 - Giulio to proceed with sensor simulation
 - Nigel to proceed with Mokka simulation production for single photons
 - Marcel to proceed with Mokka simulation of $q\overline{q}$ and K_L , n events
- Assume the simulation is independent of pixel circuit type (shaper/sampler, etc)
 - Simulation will then be some "average" of the two?

Parameter dependence

- How does the resolution depend on the parameters of the simulation?
- Want to evaluate the resolution as a function of
 - Noise
 - Threshold
 - Charge diffusion values
 - Dead area
 - Cluster algorithm
 - Pixel size (?)
- We should determine the "standard" values to use for these
- Noise: complicated by scale discrepancy
 - GEANT4 deposits ~3.2keV in epitaxial layer; Giulio's simulation gives 1300e-
 - This corresponds to $\sim 2.5 \text{eV}/\text{e}^-$, known silicon value $\sim 3.6 \text{eV}/\text{e}^-$
 - E.g. take 30e⁻ noise as 30/1300 ~ of MIP or assume 3200/3.6 ~ 900e⁻ total so noise is 30/900 if MIP?
 - Also, use shaper or sampler noise? What are the "best" values?

Understanding resolution

- Want to build up from SimCalorimeterHits to fully digitised MAPS in stages
 - See where the resolution comes from
- Want to also compare with diode pads option
 - If different, need to understand why
 - Ideally, would do this comparison on the same simulated events; removes fluctuations from showers, etc.
 - Would be possible if energy deposits in bulk silicon are stored (as planned); is this done?
- Should be done with "standard" set of parameters and cuts
- Determine resolution for at least one representative energy
 - SimCalorimeterHits analogue sum (i.e. only sampling fraction and shower fluctuations); this will be different for MAPS (using 15µm) and diode pads (using 300 or 500µm) of silicon. It is independent of cell size
 - Digitized diode pads analogue sum, with reasonable threshold
 - SimCalorimeterHits discriminated hit count, for MAPS, with and without clustering
 - Digitised MAPS hit count, with and without clustering

Linearity and resolution

- Response as a function of energy
 - From 0.5GeV to 500GeV
- Non-linearity from binary readout important
 - Can do as a function of pixel size? At least for multiples of $50\mu m$?
- Both linearity and resolution will depend on clustering
 - Expect higher rate of 8-neighbour hits at high energies
 - Value assigned to cluster containing these pixels will have big influence
 - Could potentially optimise clustering for linearity or resolution; not both?
- Leakage into HCAL important also; how to handle this?
 - Just look at ECAL? Worse resolution
 - Try to include HCAL? Confuses what is due to MAPS and what not

PFA studies

- "No harm" check
 - Need to ensure MAPS used like diode pads does not degrade PFA results
- Do a check which ignors benefits of MAPS
 - Worse case; can only improve later
 - Sum pixels (with clustering; adds complications at boundaries?) over area equivalent to diode pads
 - Make faked-up CalorimeterHits from sums, with energy proportional to number of clusters
 - These feed directly into PandoraPFA with no further changes (except truth-reco mapping needed?)
- Also, try to use benefits of MAPS in PFA directly
 - Need to adapt PFA algorithm to benefit from finer granularity
 - Large study so may not be possible in time available