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e ILC CALICE

« CALICE MAPS Concept, R&D activity
e Conclusions
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ILC operation
2820 bunches 5 Hz

TESLA 500GeV | "l

Buffer data  Triggerless datareadout

» Exact ICL beam timing parameters not yet defined
— Assume close to previous (“TESLA”) design
— Beams collide rapidly within a quick burst (“train”)
— Long dead time between trains

» Assume worst case timing as follows
— Beam collision rate within train = 6.7 MHz, i.e. 150ns between collisions
— Number of collisions within train = 14000, i.e. train is 2ms long
— Train rate = 10Hz, i.e. 100ms between trains; 2% duty cycle
» Rate of signals
— ILC is not like LHC; rate of physics processes is small

- tI;/Io?]t collisions give nothing, but when reaction does happen, many adjacent channels will
e nit

— Expected rate not very well known; needs detailed simulation modeling
— Assume average ~10-6 hits/pixel/crossing, which is ~0.005 hits/pixel/train
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CALICE description

e CALICE has a baseline ECAL design

o Sampling calorimeter, alternating thick conversion
layers (tungsten) and thin measurement layers
(silicon)

« Around 2m radius, 4m long, 30 layers tungsten an
silicon, =2000m2 Si

 Mechanical structure

» Half of tungsten sheets embedded in carbon fibre
structure

» Other half of tungsten sandwiched between two
PCBs each holding one layer of silicon detector
wafers

* Whole sandwich inserted into slots in carbon fibre
structure
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CALICE description

Baseline ECAL design

* Silicon sensor detectors in baseline are
diode pads, pad size between 1.0x1.0 and
0.5x%0.5 cm2, glued to large PCB

» Pad readout is analogue signal; digitized
by Very Front End (VFE) ASIC mounted o o
the other PCB side

» Si wafers = 10x10cm2

 Si layers on PCB = 1.5m long 30cm wide
» Average dissipated power 1-5 pW/mm2
» Total number of pads around 20-80M
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CALICE MAPS design

MAPS ECAL design

Baseline design with diode pads largely unaffected by use of
MAPS

Potential benefits include: <-m~~~§

« Reduced PCB section for MAPS mmmm) Decrease in
Moliere radius EmmE Increased resolution

* Increased surface for thermal dissipation o
» Less sensitivity to SEU because of spread out logic 2

» Cost saving (CMOS standard process vs. high resistivity Si e
for producing 2*107"7 cm2 and/or overall more compact

detector system)

» Simplified assembly ( single sides PCB, no need for
grounding substrate)

Baseline design with VFE (left) and MAPS without
VFE (right)
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CALICE MAPS design

 Divide wafer into small pixels so as to have small probability of
more than one particle going through each pixel
 Binary readout, 1bit ADC

* Improved jet resolution or reduced number of layers ( thus
cost) for the same resolution

» Around 100 particles/mm2 pixel size of maximum
100 X 100u?2

« Current design with 50 x 50umz2 pixel

* Total number of pixel for ECAL around 8 x 1011 3 i
pixelsEmm) Terapixel system

* Record collision number each time hit exceeding 2
threshold (timestamp stored in memory on sensor

e Information read out in between trains

—~
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e e
Incoming primariy photon energy [GeV]
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CALICE MAPS design

* First prototype designed in CIS 0.18 um process
submitted early 2007

» Different pixel architectures included in the first prototype

e Target is to reduce noise to the level of physics
background (S/N>15)

o Faulty pixels masking and variable threshold to reduce
false hits and crosstalk

e Optimization of pixel layout and topology essential
e Minimization of power consumption essential

—
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CALICE MAPS design

Pixel layout optimization:

Maximization of signal

Minimization of charge sharing (crosstalk)
Collection time

Large phase space:

Pixel size

Diode size

Diode layout Simulation

Design

Process

CALICE MAPS
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1.8x1.8 pm?

CALICE MAPS design
1.5V

3.5x3.5 pm?
3.3V

Q lost in NWell

Q collected by diodes

150

50

Full 3D device simulation using TCAD
Sentaurus (Synopsys) for charge
collection study MAPS - central NW houses electronics-

160 150

4004

20071

Collected charge on the diodes
X and central Nwell vs. MIP
Impact position
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CALICE MAPS design
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Q;, 225=>SIN~4 Q,,250=>SIN~4.4 Qun275=>SIN~48 Q;300=>S/N~52
*Crosstalk is reduced by increasing threshold

*This at the expense of S/N
*Reduce the charge lost in N- WeII housing the \
readout electronic \ :/ _
| A= 52mV @ 250 e

«AVv=52mV @ 250 e- - i {ff/«; : \ /

* Noise =12 mV (8 fF) e \ /

. S/ N =4. 33 (Sg = Ng)\\ BB fjf;:jj;ﬁf;i/'""
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CALICE MAPS design

Optimization MAPS process

e Using Pwell implant to shield N-well housing readout electronic

elmprovement in charge collection

eOptimization of the diode location and size is necessary

Diode NWell

Substrate side Top side

eep-PWell
Epitaxial

Substrate e

12 20 22 24 2B 28 20

£

Electric potential in epitaxial layer12um

ﬁ
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CALICE MAPS design - pixel simulation -

Deep PW

Electronics Diodes
Adjacent

Diodes

Bias:
-n-Well 1.8/1V
<Diodes: 1.5V

Epi-Layer

Substrate (left floating)

» Several Deep P W layouts studied
» Optimization of collecting diodes size and location _ given
the electronic design constraints

Cell size: 50 x 50 um?

—
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CALICE MAPS design - pixel simulation -
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Pre-Shape:

Pixel reset before start
of bunch train

Stand by in readout

Hit event generates one
time hit-flag to the logic
CR-RC shaper decays
according to input
amplitude then is ready
to accept next event

Pre-Sample :

Pixel reset before start
of bunch train and
automatically after local
hit during bunch train
Stand by in readout

CA output sampled after
Reset and then real-
time difference input to
comp

Expected similar
noise characteristics
from both designs

CALICE MAPS design - readout

Pre-Shape Pixel Analog Front Low gain / High Hit
End Rst Gain Logic
L | Rih Comparator
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CALICE MAPS design - pixel layout -

ORI

T e L m -

Pre-sample layout Pre-shape layout
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eRow split into 7 groups of 6 pixels

eFollowing a hit, for each row the logic stores in SRAM time stamp(13 bits), pattern

number (3 bits), pattern (6 bits)

e22 bits/hit + 9 bits row encoding = 31bits/hit

eRegister for masking out noisy

G. Villani

pixels

CALICE MAPS

phi2 phil

eEach digital block serves 42 pixels from one row

Mlode

Addi[2:0]
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CALICE MAPS design - pixel architecture -

e 1*1 cm?in total = {
* 2 capacitor arrangements 5
« 2 architectures g
6 million transistors, 28224 pixels ©
* Estimated power: N‘
>
=10 yW/pixel continuous g
=40pW/mm?Z2including 1% duty factor 3
= LY
» Dead area =200 um every 2 mm e =
B Architooture” Architecture
* Each sensor could be flip-chip bonded [
to a PCB B _
= B4 pixels.
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CALICE MAPS design — pixel architecture

[ Sensor microphotograph ]
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CALICE MAPS - RAL test setup -

Laser MIP ,
 Three wavelength laser: &
A=1064, 532,355 nm,
focusing < 2 ym,

pulse 4ns, 50 Hz repetition,

 Labview Control software

» MIP Calibration: Si reference detector coupled to low noise CA + differentiator (no shaper)
A250CF peltier cooled

« Amplifier Gain measured ~ 7mV/MIP

« Amount of stray light and EMP reduced within the laser test setup
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CALICE MAPS - RAL test setup -

18

16

14

12 4

10 -

Q(fC)

N o N A O ®

A250CFcal -QvsV -

[ Reference sensor ] >)

/ [ ND filter }\

0.498 3.82 7.24 10.53 13.58 16.78

V(mV)

M LeCroy WR6100A

A250CF calibration using
Injected charge through
capacitor and pulse
generator
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CALICE MAPS - RAL test setup -

File Werical Timeb figger  Display Utiliies Help A250CF cal -Vout (laser E)
» * A250CF output vs. Laser
S e e , intensity
* Q injected vs. Laser intensity
. * MIP-equivalent vs. Laser
. intensity
| * Sub-MIP resolution AND
LdSer output 0% g accuracy capability (A =
’ o K 1064nm, spot size = 2um)
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Conclusions

« MAPS-based ECAL can potentially offer a number of advantages in terms
of performances and overall cost

* Novel INMAPS process for MAPS might have significant advantages in
terms of charge collection efficiency

» Pixel design and readout electronics optimized for charge collection and
S/N

e First design aims at demonstrating feasibility of the approach and to
achieve significantly high S/N

* Power dissipation still high and needs to be addressed
 Test setup ready
e Chip testing underway now

ﬁ

G. Villani CALICE MAPS Prague September 2007



Rutherford Appleton Laboratory

Science & Technology . :
W@ Facilities Council Particle Physics Department

CALICE MAPS backup slides
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150 1s the
pomnt used in
all other sims
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CALICE MAPS backup slides

. Geanszi”“ — Appl)_zly charge spread| ToBinit —— %Ein - %Ein -
In 5x5 ym?2 cells after charge spread 4P e 744
Register th_e position and the number C%E N BB
of hits above threshold mEe T Toatts
+ noise only hits : — DB 1 %Ei 1 %E -
proba 10° £ ~ 10° hits in the whole detector 25 i e
BUT in

a 1l.5*1.5 cm2tower : ~3 hits.

L]

Add noise to signal hits Sum energy in
LTI AR O - 50x50 um2 cells

(1e-~3eVL 30e-noise) -

sum
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CALICE MAPS backup slides
Stave structure

Lack of hybrids/ASIC allow less complex/thinner PCB
Thinner sensors (down to 100 um)

MAPS
Bump-bond MAPS

with optical link
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