MAPS — The "No Harm" Physics Study and Early Sensor Tests at Imperial MAPS Group Meeting, RAL

Jamie Ballin

HEP, Imperial College, London j.ballin06@ic.ac.uk

18th October 2007

2 Sensor tests at IC

Scanning thresholds

The "Do No Harm" idea

Just count hits in virtual 1 cm² cells

- check we do no harm by applying MAPS: sum hits in virtual 1 cm² cells, and apply a factor to convert from the number of hits to MIPs or GeV
- takes output from AM's MIPFinder and digitisation
- turn off noise, no dead area for now

Need to create new collections

- For each MAPS SimCalorimeterHit from AM's digi, smear the position to the centre of a 1 cm² cell. Create a new SimCalorimeterHit, CalorimeterHit and relationship between them if that cell didn't already exist.
- $\bullet\,$ Set the energy of the new cell equal to the number of hits $\times\,$ conversion factor
- Compare photons at 10 GeV and 20 GeV to standard ECAL case to determine conversion factors

Number of hits to GeV

10 and 20 GeV photons

Number of MAPS hits per event

- Fit parameters (gah, ROOT!): 20 GeV has $\mu =$ 1481 hits and $\sigma =$ 66 hits
- 1481/2 not quite 764.4, but ...
- Take 1 hit = 0.0135 GeV

The No Harm Study Sensor tests at IC

NoHarm and standard ECAL- x, y, z distributions

20 GeV photons - average positions, NoHarm ECAL top, Standard ECAL bottom

CALLE Calorimeter for ILC

J. A. Ballin, MAPS - NoHarm and Sensor Tests

18th October 2007

NoHarm and standard ECAL- x, y, z distributions

20 GeV photons - average positions, NoHarm ECAL top, Standard ECAL bottom

- x, y shower development agree in each case
- NoHarm z cells are displaced by 5 mm relative to standard ECAL case ⇒ needs a fix

Pandora and NoHarm

What happens when we push NoHarm through Pandora?¹ Std ECAL

Standard and MAPS Pandora - 20 GeV gamma

 $^1 \mbox{Answer:}$ it crashes miserably: I had to hardcode the new collection names into <code>PandoraPFAProcessor.cc</code>

Calorimeter for ILC

J. A. Ballin, MAPS – NoHarm and Sensor Tests 18th October 2007

Pandora and NoHarm

Photons, great, but what of the Z?

Is the tail on the photon energy distrubution due to Pandora incorrectly clustering the photon shower to two clusters?

- Apparently not.
- Nor does it reconstruct > 1 particle.

Pandora and NoHarm

Oh dear

Mmmm. Discuss.

Outline

Sensor tests at IC
Scanning thresholds

2 Sensor tests at IC

Scanning thresholds

Testing end-to-end sensor operation

Task Number 1: scan thresholds

- **③** Scan thresholds across a range such as 2048 ± 256 DAC values
- Measure number of hits for each threshold: expect a monotonically decreasing curve (a reverse 'S') as a function of increasing threshold
- Hiccup 1: Discover number of hits increases with threshold i.e. we get peaks!
 - At very low thresholds, memory fills very quickly, within a few timestamps (3, 4, 5) of the 8000 available in a bunch train (BT).
 - At threshold and beyond, memory may not fill during a whole $\text{BT} \Rightarrow$ can get more hits in more time
 - ⇒ need to normalise the hit curve with the last time stamp in that BT to get correct P(hit) as a function of threshold.
- Hiccup 2: Peaks still remain! Check threshold is not related to common mode.
- Hiccup 3: Discriminator was directly coupled to monostable output. This was fixed 2 days ago, but all the same, things aren't pretty...

The No Harm Study Sensor tests at IC

Scanning thresholds

Pixel (35, 64) for example

The No Harm Study Sensor tests at IC

Scanning thresholds

Testing end-to-end sensor operation

Consider pixels (35, 64) and (55, 160)

J. A. Ballin, MAPS - NoHarm and Sensor Tests

18th October 2007

The No Harm Study Sensor tests at IC	Scanning thresholds
---	---------------------

Fin.

