MAPS – Beam Test: tracking efficiencies Also featuring: AM's Monte Carlo Beam Test Simulation MAPS Group Meeting, RAL

Jamie Ballin with Paul Dauncey & Anne-Marie Magnan

HEP, Imperial College, London j.ballin06@imperial.ac.uk

29th February 2008

Outline

Making χ^2 fits for real tracks

- Overview
- The wondrous libMapsTracks.so library
- Aligning the system

2 Tracking results

- Alignment and errors used
- χ^2 probabilities
- Beam profile
- Residual on fourth sensor

3 Sensor efficiencies

- Efficiency plots
- x, y, t efficiency and inefficiency plots
- Cross checks
- AM's MC Simulation

Tracking results Sensor efficiencies Summary

Overview The wondrous libMapsTracks.so library Aligning the system

Last time...

Defining a loose efficiency

- ► For each bunch crossing, count how many hits each sensor has.
- For the sensors held at nominal, make a track when each of the 3 sensors has at least one hit. Get N tracks.
- ► Ask whether the threshold-scanned sensor confirms this. Get *i* confirmations, and *N* − *i* rejections.
- Efficiency ϵ is simply,

$$\epsilon = rac{i}{N} imes 100\%$$

Tracking results Sensor efficiencies Summary

Overview

The wondrous libMapsTracks.so library Aligning the system

Controversial results

Tracking efficiency, sensor 7

Tracking results Sensor efficiencies Summary Overview The wondrous libMapsTracks.so library Aligning the system

Queries over purity of sample

- Were we being thrown by fakes?
- Applying the same analysis to noise runs suggested that fakes were not dominating the efficiency curve.
- But impurity did grow alarmingly for low thresholds.

 $\begin{array}{c} \text{Making } \chi^2 \text{ fits for real tracks} \\ \text{Tracking results} \\ \text{Sensor efficiencies} \\ \text{Summary} \end{array} \qquad \begin{array}{c} \text{Overview} \\ \text{The wondread} \\ \text{Aligning the sensor of the tracks} \\ \text{Overview} \\ \text{The wondread} \\ \text{Aligning the sensor of the tracks} \\ \text{Overview} \\ \text{The wondread} \\ \text{Aligning the sensor of the tracks} \\ \text{Overview} \\ \text{The wondread} \\ \text{Aligning the sensor of the tracks} \\ \text{Tracking results} \\ \text{Tracking results$

Overview The wondrous libMapsTracks.so library Aligning the system

What constitutes a track?

- One hit in each of three or four layers at one particular bunch crossing.
- Now apply a χ^2 fit: Define χ^2 for one dimension (e.g. *x*) for *N* points as,

$$\chi_x^2 = \sum_{i=1}^{N} \left[x_i - (p_0 + z_i p_1) \right]^2 / \sigma_i^2$$
(1)

where p_j are the fit parameters (to be determined), and σ_i is the error intrinsic to the measurement at z_i , for *z* representing the experiment axis.

- Let us take $\sigma_i = \sigma_0$ (though I do not take $\sigma_x = \sigma_y$). Assume uncorrelated errors.
- Start by minimizing χ_x^2 for each track: you get a matrix equation,

$$\begin{pmatrix} \mathbf{N} & \sum_{i} z_{i} \\ \sum_{i} z_{i} & \sum_{i} z_{i}^{2} \end{pmatrix} \begin{pmatrix} \mathbf{p}_{0} \\ \mathbf{p}_{1} \end{pmatrix} = \begin{pmatrix} \sum_{i} x_{i} \\ \sum_{i} x_{i} z_{i} \end{pmatrix}$$
(2)

Invert to determine p_j

Evaluating the track quality

Evaluate p_j for a given track, so the track in (x, y) is defined by

$$r = \begin{pmatrix} p_0 \\ q_0 \end{pmatrix} + z \begin{pmatrix} p_1 \\ q_1 \end{pmatrix}$$
(3)

for q_j the fit parameters in y

- Compute χ^2
- ► Use TMath::Prob(chisq, ndf) to evaluate probability that the track is real and not formed through statistical fluctuations. Here ndf = number of points N - 2 for the 2 p_j.
- Currently evaluate x and y seperately, but one can easily combine them:

$$\chi^2_{\rm tot} = \chi^2_x + \chi^2_y \tag{4}$$

Finally, define θ_z as the polar angle between the track and the *z* axis,

$$\cos \theta_z = \frac{1}{\sqrt{p_1^2 + q_1^2 + 1}}$$
 (5)

Introducing MapsTrack, MapsSensor and MapsTrackManager

New and exciting code structure, completely independent of ${\tt MpsAnalysis}$ and DAQ framework

- MapsSensor: is aware of its z positioning and id.
 - Is told by users whether it's been efficient or not.
 - Is also told of residuals for alignment.
 - Application code queries sensors for their plots.
- MapsTrack: The major workhorse.
 - Holds an STL map of MapsSensor*s and std::pair<int, int>s.
 - Provides methods for evaluating fit parameters and such like.
 - Must hold either 3 or 4 hits; behaviour is undefined for anything else.
- MapsTrackManager: Utility class used to persist tracks. You create a set of MapsSensor*s and MapsTrack*s, and add them to an instance of this object. One can then use,
 - exportToRootFile: saves MapsTracks and MapsSensors to a ROOT file using TTree structure
 - recreateFromRootFile: recreates tracks and sensors from ROOT file

Tracking results Sensor efficiencies Summary Overview The wondrous libMapsTracks.so library Aligning the system

Flexible code

- The only truly persistent state is a track's hits: all other quantities are reevaluated at run-time! This is uber-flexible!
- Very easy to reapply new track fit errors
- Trivial to apply new alignments!
- Idea is to use/write little tools to read in tracks, change parameters, and re-export them to a new ROOT file

Tracking results Sensor efficiencies Summary Overview The wondrous libMapsTracks.so library Aligning the system

Determining alignment

Physical (x, y, z) in mm in World coordinate will not directly correspond to pixel (x, y, z)

- DESY beam test set up for tracking runs: z coordinates¹ for each sensor taken as,
 - ▶ 8:0mm
 - ▶ 7: 18 mm
 - 2: 36 mm
 - ▶ 6: 54 mm
- Let sensors 8 and 6 define a World coordinate system

¹While these may be slightly out, what matters is that they were evenly spaced

Overview The wondrous libMapsTracks.so library Aligning the system

Determining alignment

When one has a track with sensors 6 and 8 containing hits, extrapolate² their hits to sensors 7 and 2: plot the residual, r_x, defined as

$$r_x = x_{\rm projected} - x_{\rm real} \tag{6}$$

similarly for r_y .

- Expect a peak for real track hits, and a uniform background for noise.
- It can be shown that the width σ_{fit} of the fitted gaussian has the correspondance,

$$\sigma_0 = 1.25\sigma_{\rm fit} \tag{7}$$

for σ_0 the intrinsic resolution of the sensor.

²A literal x = mz + c baby line defined by the two points, not a χ^2 fit

Tracking results Sensor efficiencies Summary Overview The wondrous libMapsTracks.so library Aligning the system

Alignment results

Ghosting in the x coordinate (\sim 10% level)? Fit to main peak only... All units in pixels

Alignment and errors used χ^2 probabilities Beam profile Besidual on fourth sensor

Alignment and errors adopted

From previous slide,

 $\begin{aligned} r_{x,y|2} &= (-2.0 \pm 0.6, 2.3 \pm 0.5) \\ r_{x,y|7} &= (7.3 \pm 0.7, -1.3 \pm 0.6) \end{aligned}$

- Add these values to all hits for sensors 2 and 7 when fitting anything. All results from here onwards are in the aligned system.
- Using $\sigma_0 = 1.25\sigma_{\text{fit}}$, take the error $e_{x,y}$ in mm as,

$$e_{x,y} = (0.0438, 0.0350)$$
 (8)

χ^2 probabilities

Alignment and errors used χ^2 probabilities Beam profile Residual on fourth sensor

- Cut: $p_x \& p_y > 0.05$ very effectively excludes noisy tracks
- *p_x* and *p_y* distributed over entire interval, but with a slight bias to high probability: might do well to tighten *σ*₀, but I wanted to be objective.
- Beware: discrete system causes discretisation in p_x, p_y for common track combinations!

Alignment and errors used χ^2 probabilities Beam profile Residual on fourth sensor

Bunch crossing number of all good tracks

Interesting...

Alignment and errors used χ^2 probabilities Beam profile Residual on fourth sensor

\bar{x}, \bar{y} all track hits

Apologies: The result presented at the last meeting in my absence was erroneous, and showed a beam spot (which does not exist here) which was born solely out of a phase space effect, and with carries no proper cuts on track quality.

Alignment and errors used χ^2 probabilities Beam profile Residual on fourth sensor

θ_z of tracks

Applying p_x , p_y cut

Alignment and errors used χ^2 probabilities Beam profile Residual on fourth sensor

θ_z of tracks Or, put it another way

- Clearly low θ_z implies beam particles and high p_x, p_y .
- Not useful for cosmics
- Don't use as an explicit cut

Alignment and errors used χ^2 probabilities Beam profile Residual on fourth sensor

Fourth hit residual

- When ∃ a fourth hit, use the other three hits to define a new track.
- Check this three hit track passes the usual cuts.
- Find the residual between the extrapolated track and the fourth sensor's hit.
- Use this as a further cut on the fourth sensor's efficiency.
- We observe consistent alignment!

Sensor 2, Sensor 7

Fourth hit resiual

Applying cut on four track p_x , p_y given a good three hit track p_x , p_y is very effective Sensor 2 Sensor 7

- No cut on four hit track probabilities ►
- Cut applied ►

htemp

Entries 1303

Mean 0.4986

RMS 13.68

Underflow

Efficiency plots x, y, t efficiency and inefficiency plots Cross checks

Crude efficiency calculation

Sanity check suggests, before proceeding further:

$$\frac{n_4}{n_3} = \frac{5000}{28,000} \sim 17\%$$

(That's with cuts applied too)

(9)

Efficiency plots

x, *y*, *t* efficiency and inefficiency plots Cross checks

Sensor efficiencies

Selection criteria

- Require 3 hit track $p_x \& p_y > 0.05$
- Efficient if \exists hits and 4 hit track has $p_x \& p_y > 0.05$
- Inefficient ∄ 4th hit

Summary

Efficiency plots

x, *y*, *t* efficiency and inefficiency plots Cross checks

Efficiency with threshold

Efficiency plots

x, *y*, *t* efficiency and inefficiency plots Cross checks

Where were we efficient?

Hints of an optimal capacitor layout?

Rotated sensors

Rotated \Rightarrow samplers on the left, shapers on the right

Non-rotated sensors

Summary

Efficiency plots

x, *y*, *t* efficiency and inefficiency plots Cross checks

When were we efficient?

- Efficient
- Inefficient

Summarv

Efficiency plots

x, y, t efficiency and inefficiency plots Cross checks

Raw efficiencies

```
Sensor id 2 [z=36, al=(-2.015, 2.347)]:
Efficiency:
Thresh: 80 : 22.93
Thresh: 90 : 23.98
Thresh: 100 : 18.36
Thresh: 110 : 21.08
Thresh: 120 : 11.27
Thresh: 130 : 10.19
Thresh: 140 : 13.94
Thresh: 150 : 9.6
Thresh: 160 : 13.51
Thresh: 170 : 5.714
Thresh: 180 : 8.607
Thresh: 190 : 12.36
Sensor id 6 [z=54, al=(0, 0)]: Efficiency:
Thresh: 80 : 23.94
Thresh: 90 : 21.56
Thresh: 100 : 17.61
Thresh: 110 : 17.65
Thresh: 120 : 11.66
Thresh: 130 : 12.69
Thresh: 140 : 15.96
Thresh: 150 : 7.527
Thresh: 160 : 7.576
Thresh: 170 : 10.31
Thresh: 180 : 8.187
Thresh: 190 : 9.827
```

```
Sensor id 7 [z=18, al=(7.3, -1.25)]:
Efficiency:
Thresh: 80 : 24.6
Thresh: 90 : 24.05
Thresh: 100 : 17.65
Thresh: 110 : 22.95
Thresh: 120 : 12.84
Thresh: 130 : 12.12
Thresh: 140 : 17.46
Thresh: 150 : 11.22
Thresh: 160 : 12.77
Thresh: 170 : 8.333
Thresh: 180 : 12.04
Thresh: 190 : 5.66
Sensor id 8 [z=0, al=(0, 0)]: Efficiency:
Thresh: 80 : 27.01
Thresh: 90 : 22.01
Thresh: 100 : 17.56
Thresh: 110 : 23.26
Thresh: 120 : 14.19
Thresh: 130 : 14.29
Thresh: 140 : 12.88
Thresh: 150 : 15.09
Thresh: 160 : 11.61
Thresh: 170 : 10.17
Thresh: 180 : 12.87
Thresh: 190 : 7.292
```


Efficiency plots x, y, t efficiency and inefficiency plots Cross checks

Noise-only run and "displaced time"

Cross checks

- Noise only runs: effectively 0% efficient, with few 3 hit tracks passing selections
- Run 490083 (noise) 252k bunch trains

ExtractEfficiencies: summary: Total candidate tracks: 20 Efficient hits: 0 Inefficient hits: 20

- ▶ Contamination in beam run? Beam run has 1.3 M bunch trains ⇒ $20/252,000 \times 1.3 \times 10^6 = 103$ of the 3 hit tracks in the beam run are fakes
- ▶ Just 103/34,948 × 100% = 0.3% of three hit tracks are fakes
- ► Using a decorrelated time for the fourth hit ⇒ no four hit tracks passing either!

Efficiency plots *x*, *y*, *t* efficiency and inefficiency plots **Cross checks**

Consistency checks

Run 490084 (beam) – 1.3M bunch trains ExtractEfficiencies: summary: Total candidate tracks: 34948 Efficient hits: 4459 Inefficient hits: 30489

Cross check the efficiency with,

$$\frac{\langle n_4 \rangle}{n_{\text{candidates}}} = \epsilon^4 \tag{10}$$

•
$$\frac{\langle n_4 \rangle}{\langle n_3 \rangle} = \frac{4459}{34,948} = 12.8\%$$

• Expect ~ 1 - 10e⁻ per bunch train (poisson distribution) $\Rightarrow (\frac{4459}{5 \times 1.3 \times 10^6})^{\frac{1}{4}} = 16.2\%$ efficient

Could the fourth hit cut be too tight?

(3 hits, 4 hits)

- If anything, the p_x , p_y are probably too loose.
- Furthermore $\frac{\langle n_4 \rangle}{\langle n_3 \rangle}$ is stable at the order of 1% point if I increase the p_x, p_y cut to 0.1, and reduce σ_0 by 25%.

AM's MC Simulation

Summary

We have a reliable and stable way of finding tracks

- Alignment is stable
- Track counts are not very sensitive to cuts and error specifications
- Sadly the efficiency remains sub 20%
- Can even find tracks at thresholds < 100, but we can't operate the sensor like this(?)

You are welcome to try it for yourself with libMapsTracks.so...

AM's MC Simulation

Summary

E

|--|

Anne-Marie's Monte Carlo Simulation

Beam test setup

- 4 layers simulation, equivalent to run 490084,
- no noise only, but seing Jamie's cuts in space is removing them completely anyway, we can neglect them...
- noise added to the signal
- complete charge spread with last results from Giulio (full deep-pwell+nwell simulation in the centre pixel)
- No shapers/samplers consideration: all done with shapers. On the point of view of the simulation, the samplers have *2 in gain, but then *2 in nominal threshold, so converting back to eV gives back the same factor ⇒ would just have a slightly higher noise (estimated ~ 30% higher : noise proba ~ 7 × 10⁻⁶ 300 TU).

AM's MC Simulation

Estimation of the noise

- A quick calculation gives : 120 TU (threshold units), 10^{-6} noise proba = 4.75 σ (just from a gaussian distribution) $\Rightarrow 1 \sigma \sim 25$ TU.
- First estimation from old $\sigma(E)/E$ vs thresh plot: 3 keV \Rightarrow 25% efficiency.
- and 25% efficiency is seen 100 TU,
- 100 TU has noise proba \sim 4 σ ,
- ▶ so 4 σ =3 keV gives 1 σ = \sim 750 eV.

- Simulation hence done with 750 noise (red curve),
- ► and ~3.6 keV (~120 TU) nominal threshold for 3 sensors, threshold scan between 0 and 10 keV on the fourth sensor.
- ► For comparison, black curve=80 eV noise (what would be expected if the nominal threshold chosen at 120 TU was compatible with half a MIP in the worse case = ~130 electrons *3.2 ~ 380 eV = 4.75 * noise)
- Compatibility with data:

eff(%)	dataTU	MCkeV	conv factor keV/TU
25	85	2.7	0.032
20	105	3.0	0.028
15	145	3.3	0.023
10	200	3.6	0.018

- ► so not the same shape, but roughly 0.03 *25 = 0.75 keV noise ⇒ consistent.
- if it was as expected: the efficiency at nominal threshold would be better than 99% ...

AM's MC Simulation

Plottage

