MAPS – Beam Test: tracking efficiencies, Part III in a Saga Revised results – with dead areas implemented

Jamie Ballin

HEP, Imperial College, London j.ballin06@imperial.ac.uk

18th March 2008

Overview

- This is a follow on to 29th February slides, http://www.hep.ph.ic.ac.uk/calice/mapsMeetings/ 080229ral/ballin.pdf
- Here are some revised results...
 - Minor correction to χ^2 error parameter
 - Inclusion of dead areas and global geometry
- Also included,
 - A basic event display

Fit parameter $e_{x,y}$ used in χ^2 calculation

Last time I quoted,

$$\sigma_0 = 1.25\sigma_{\rm fit}$$

for $\sigma_{\rm fit}$ the width of the residual distribution, and σ_0 the intrinsic error on the sensor. This should in fact be,

 $\sigma_{\rm fit} = 1.25\sigma_0$

since the width of the residual error is a convolution of the error in the track and the error intrinsic error of the sensor. Hence $\sigma_0 < \sigma_{\rm fit}$. The 1.25 factor is a consequence of our particular geometry. This then implies,

$$e_{x,y} = (0.026, 0.02) \tag{1}$$

in mm, IF you do the fit to pixel coordinates. One then gets a flat χ^2 probability p_x , p_y distribution. This will now be improved on in the next Section.

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Overview

- Sensor includes substantial dead areas
- More dead areas in x than in y due to readout column architecture
- While beam particles have θ_z ∼ 10mrad = a few pixels, ones may clip dead areas and hence not be confirmed as "fourth hits".
- This is a small effect, but one to get right!
- Will use official MAPS diagram, http://www.hep.ph.ic.ac.uk/ calice/mapsMeetings/070831ral/mapsCoordinates.pdf

neter netry Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Implementation

- 1. Always record raw pixel hits when creating tracks
- 2. Let each sensor have an angle ϕ , which represents its clockwise rotation angle w.r.t. global coordiate system
- 3. Convert a pixel hit to real physical location by,
 - 3.1 Mapping hit to a local (x, y) mm system
 - 3.2 Rotating it by $-\phi$
 - 3.3 Aligning it
- 4. Methods are provided in MapsSensor to...
 - 4.1 Query whether a global position in (x, y) hits a dead area of the sensor
 - 4.2 Convert a global (x, y) to a pixel coordinate in the sensor, where possible
- 5. This is pretty awkward and tedious stuff! Save yourselves the work of reimplementing it if possible.

Overview

Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Dead areas as seen by beam

Shaded areas are to be excluded from the efficiency calculation

Mutual exclusion area (beam test)

Typical output of a 4 hit track

Invoking diagnose(std::ostream& s, const MapsTrack& t) shows
what happens, Track at BX: 2526, hit pattern:

Sensor id 2 [$z=36.000 \text{ phi}_d=180.000, al=(0.000, 0.000)$] : (159, 73) [(9, 95)], (-4.275, 0.550) Sensor id 6 [$z=54.000 \text{ phi}_d=0.000, al=(0.000, 0.000)$] : (5, 98) [(5, 98)], (-4.175, 0.750) Sensor id 7 [$z=18.000 \text{ phi}_d=0.000, al=(0.000, 0.000)$] : (7, 99) [(7, 99)], (-4.075, 0.800) Sensor id 8 [$z=0.000 \text{ phi}_d=180.000, al=(0.000, 0.000)$] : (158, 71) [(10, 97)], (-4.225, 0.650) chi2X: 2.175 chi2Y: 3.675 p: (-4.180, -0.000) q: (0.680, 0.000) chi2ProbX: 0.337 chi2ProbY: 0.159 theta: 0.000 meanX: -4.188 meanY: 0.687

So a hit at (159, 73) for $\phi = 180$ goes to (-4.275, 0.550) in the global coordinate system. (The square–bracketed entry is a cross check [(168 – x, 168 – y)] of what the pixel coordinate would be were the sensor not rotated.)

Prototype event display Using a TH3F

Use DisplayTrack tool to loop over tracks...

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Prototype event display OpenGL display in ROOT

Go to View -> View With...-> GLViewer

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Alignment

Using physical system tracking rather than pixel system yields new residuals

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Alignment

- Ghosting appears reduced
- Absolute alignment appears better than before
- Do we expect this?
- \blacktriangleright \Rightarrow take new error parameters as,

$$e_{x,y} = (0.019, 0.018) \simeq (0.018, 0.018)$$
 (2)

Apparent reduction in x ghosting has improved ex

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

p_x, p_y probability distributions

chiXProb {chiXProb > 0.05 && chiYProb > 0.05}

chiYProb {chiXProb > 0.05 && chiYProb > 0.05}

0.6

0.8

1

chiYProh

- Less steeply biased to 1 than before
- (Explanation: done with the aligned system, so residuals and errors change yet again)

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

θ_z largely unaffected

- From this we see than $\bar{\theta}_z \sim 5 \text{mrad} \sim 5 \text{ pixels}$
- We'll revist this shortly

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Alignment consistency

- Good four hit track
 All four hit tracks
- ▶ Fourth hit residuals are ~ zero!

Physical *x*, *y* with good 4 hit tracks

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

meanY:meanX {chiXProb > 0.05 && chiYProb > 0.05 && nHits == 4}

- As seen in global aligned system
- \blacktriangleright \Rightarrow hits in "dead areas" are from sensors 2 and 7 (they're not actually in dead areas, it's a consequence of their physical misalignment)

Tracks rejected due to dead area intersection

Output of ExtractEfficiencies ...

ExtractEfficiencies: summary: Total candidate tracks: 28394 Efficient hits: 3819 Inefficient hits: 23466 Dead area intersections: 1109

- Of the 34,339 candidate tracks 1,405 are zapped: they intersect with the 4th sensor's dead area ⇒ unfair test?
- Average sensor efficiency,

$$\overline{e} = \frac{\langle n_4 \rangle}{\langle n_3 \rangle + \langle n_4 \rangle} = \frac{3,819}{(3,819 + 23,466)} = 14.0\%$$
 (3)

Slight improvement from excluding unfair tests

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Latest sensor efficiencies

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Efficiency by group

- ► Dotted lines at boundaries between regions ⇒ dead areas
- It's weird that quiet areas are seen on the *right* of the regions, in contradiction to expectations^a
- Consquence of "mutual dead area" exclusion
- Right of boundary Fewer tracks (mutual dead area exclusion)
- Left of boundary Fewer tracks AND lower efficiency

^{*a*}*N.B.* This plot was made with raw pixel hits \Rightarrow no funny rotation business

Effect of averaging over y axis

- Partially explainable by θ_z ~ 5 pixels, but not enough:
 - If 5/47 pixels are dead, then this is at the level of 11% of all possible tracks.
 - But 1, 106/(28, 394) = 3.9% of tracks are excluded from the efficiency calculation anyway.
 - Drop in efficiency is NOT accounted for by this effect
- Are the memory columns draining charge?
- Are hits on the right edge of the region not getting written into memory?

Shapers and Samplers

Sampler efficiency

200

Threshold

Sampler efficiency for sensor 2

Sampler efficiency for sensor 6

Sampler efficiency for sensor 7

Sampler efficiency for sensor

180

160

Overview Event information & display Consequences for tracking Consequences for efficiencies Shapers vs. Samplers

Shapers and Samplers, all sensors

All sensors added together (i.e. normalise histogram to 400%)

Samplers are more efficient than shapers

