Status Report For Threshold Scans

Shaper/Sampler Drop Trims

- As promised new and improved trimming techniques have been developed.
- As suggested, we will focus on trims calculated according to drop-off point, calculated separately for shapers and samplers.
- Here, drop-off is defined as the highest threshold where the bin content is greater than half the maximum bin content recorded.

Performance of different trims in the Shapers

Owen Miller

Performance of different trims in the Samplers

Correlation Between Pixel Stats

- This is essentially an attempt to find out whether or not individual pixel statistics from their threshold scans are consistently related.
- Specifically the statistics studied are: Mean threshold, peak threshold and 50% drop-off.

Mean Vs Drop-off

Shapers

Samplers

Mean Vs Peak

Shapers

Owen Miller

Trim Vs Shift

- This study is (hopefully) primarily a sanity check, ensuring that the alterations in pixel behaviour caused by applying a trim are both consistent and predictable.
- The following graphs are based on a comparison between trimmed and untrimmed runs, showing how much the position of the drop-off changes with the trim applied to the pixel.

Histogram Showing the effects of Applying a Trim

Histogram Showing how the Trim applied affects the 50% Drop off Point

Owen Miller

Fe55 runs

- Several sets of per-pixel threshold scan runs were performed with an Fe55 source next to the sensor.
- The following slides show the threshold scans of several pixels with and without the Fe55 source.

Sensor 13, Column 0, Row 0

Fe55

Sensor 13, column 118, row 47

Fe55

Pedestals & Noise

- The pedestal of a pixel is related to its mean threshold (on a threshold scan).
- The noise of a pixel is related to the sigma of its threshold scan.

RMS of Pixels in the Sensor

Owen Miller

Means of Pixels in the Sensor

Owen Miller

Maximums of Pixels in the Sensor

Variation in Pixel Behaviour for Different Quadrants

Owen Miller

Fit Results for Sensor 16

- From the graphs on the previous slide we can get the following statistics:
 - Shaper Capacitor Region 1:
 - Mean=5.2±24.0
 - Sigma=12±1.95
 - Shaper Capacitor Region 2:
 - Mean=5.5±24.35
 - Sigma=14.74±2.1

Fitting Program

- Marcel has been working on fitting program to deal with the 'flat-top' threshold scan distributions seen in the shapers.
- The program attempts to fit a Gaussian distribution to an individual pixel threshold scan.
- So far the program produces reasonable results in 90% of cases.

Pixel Threshold Scan, data and fitted Gaussian

Owen Miller

Reliability of fitting

Owen Miller

Laser Runs

- We are in the process of starting a study of the sensor using the laser.
- The laser will cover an area approximately 10 pixels by 10 pixels, this beam size is achieved purely by shutter control (no defocusing).

Sensor 18, Column 55, Row 85

Laser

No Laser

Sensor 18, Column 82, Row 96

Laser

No Laser

Variation in Trim Values Applied

Variation In Drop-offs

Owen Miller

