

High resistivity EPI RAL 04/06/2008 J. Crooks, M. Stanitzki, R. Turchetta, G.Villani

Why High resistivity EPI

- A standard INMAPS
 - Collects charge by diffusion
 - has charge spread
 - Only uses part of the epi layer ...
 - charge collection efficiency in the corner is about 27 %
- Moving to high-res Epi
 - deplete the EPI (with \sim 1.1 Volts), so collection by drift
 - eliminate most of the charge spread
 - Should be able to use the full epi
 - Charge collection efficiency in the corner is about 38 %

Additional benefits

- Radiation Hardness
 - The fast collection time should help making a more rad-hard MAPS
 - Something we could evaluate
- Noise
 - Depleted Silicon has a lower noise (depends how big that effect is)
 - Faster charge collection should lower noise as well
 - could use hold to gate the signal
 - Simulation to verify this
 - In general I expect superior noise performance

More benefits

- Make use of thicker epis
 - can have 20 µm epi and fully deplete it (means going from 960 to 1600 electrons)
 - could trade of signal and amplification (power)
- Fast charge collection vital for a warm machine
 - Also good for a cold machine

Preliminary simulation

- Giulio made some quick studies
- Charge collection in the corner goes from 260 to 310 electrons (20 % gain)
- At the edge between two diodes from 281 to 455 electrons (60 % gain)
- collection speed at least factor 2 faster
 - theoretically I'd expect it to be around 15 ns
 - that's only for a strip detector

Risks

- Electronics remains unaffected
 - but need deep-p well everywhere
 - issue of charge under the logic strip
- But risks during processing
 - latch-up
 - charge-up
- Layout changes minimal
 - Guard ring
 - Deep p-well everywhere

Solutions

- Processing
 - Foundry A knows what they are doing
 - have test structures on each wafer (Process control)
 - if they say they can do it, we should value their opinion
 - CMOS foundries can't afford a bad reputation these days
- Deep p-well under the logic strip
 - charge there will leak to adjacent pixels making the over efficient (they seem to be under efficient now)
 - do we build up charge there ?
 - we could have a diode-style n-well there, which collects the charge ...

Comments

- high-res epi could be big ...
 - make a fast MAPS
 - keep our technological advantage
- Risks are small
 - but as always non-zero
- This is R&D we should do !
 - we took the same risk with the deep p-well

