Random beam test analysis issues

Paul Dauncey

Basic aims of beam test(s)

- Verify performance of TPAC
 - Efficiency for MIPs, noise, number of hits...
- Match TPAC performance to simulation using tracks
 - Sensor simulation: compare different sensors (hi-res, deep p-well)
 - GEANT4 simulation: rates of hits, MIP efficiencies vs threshold
 - Can be done with pion or electron beams, without tungsten converter
- Measure number of hits (and other properties) of EM showers
 - Number of hits vs energy, shower width at various depths in X_0
 - Verify (or not) GEANT4 simulation of EM showers at very high granularity
 - Must have electron beams for this with tungsten converter to generate EM showers
- Must know efficiency from first part to do second part
 - This is the main point of the CERN beam test

How do we measure efficiency?

- Five or six layers of sensors
 - Treat central one or two as "sensors-under-test"
 - Vary their parameters (threshold, masking, etc)
 - Keep outer two upstream and downstream sensors fixed
- Form tracks from outer sensors and project into inner sensors
 - Measure fraction of times a hit is found near projection to give efficiency
 - Easy, right?

Noise rate

- Average noise is ~7TU, so $5\sigma \sim 35TU$
- Pedestal is fixed to 100TU by trimming
- Ideal threshold ~135TU but memory saturates at this threshold
- Due to few pixels with high noise
- Need to mask these, probably ~few % but direct impact on efficiency
- Assume hit rate ~5k per sensor per BT

Other efficiency effects

- Sensor has dead areas
 - Four 250µm-wide strips vertically
 - One 50µm-wide strip horizontally
 - Total active area 88.8% within nominal sensitive area
 - May also have tracks hitting outside sensitive area if sensors misaligned
 - Want to correct for this in efficiency, i.e. we want the efficiency for an active pixel, not of whole sensor
- Memory will saturate at 19 hits per row
 - Tracks at end of bunch train may have lower efficiency than at beginning
 - Can identify exactly when each row filled
 - Again, want to correct efficiency for this effect
- In all three cases (masking, dead areas, memory saturation)
 - Would need to know where hit was "supposed" to be if correcting at a track-by-track level
 - Masking needs us to know within a single pixel, memory a single row

Paul Dauncey

Accuracy of track projection

- Resolution of projection ~ $\sigma_{outer}/2$
 - Assuming sensors equally spaced, negligible scattering
- If each hit in outer sensors located to one pixel
 - Implies $\sigma_{outer} \sim 50 \mu m / \sqrt{12} \sim 14 \mu m$ so projection resolution ~ $7 \mu m$
- But will in general have some nearest neighbours fire too
 - Do we set threshold in outer sensors much higher to cut down neighbour hits?
 - Reduces outer sensor efficiency and hence rate of usable four-hit tracks
 - Depends on (currently unknown) beam rate
- Even 7µm resolution is not ideal
 - If "definitely in a pixel" means 2σ from edge, then only ~20% of pixel surface will be used (and is a biased sample, not over whole pixel surface)
 - Cannot do a "per-track" hit efficiency correction easily
 - How do we correct for the "artificial" inefficiencies? Statistically?

Noise rate implications

- Noise rate likely to be ~5k hits/BT for each sensor
 - This is ~0.5hit for each BX during an 8000 BX train
- If PMTs work well, coincidences time-tag the beam particle
 - Need to look at hit maybe within ±1 (?) timestamp of PMT hits (plus potentially some fixed time alignment offset)
 - Will have ~1-2 noise hits within this time window in each sensor
 - Beam particle will give a similar number if sensor is efficient
- For making tracks in outer sensors
 - Need to do correlations also in space to identify real hits
 - Effectively track pattern recognition; need alignment at what level?
 - Do we allow tracks with only three of the four outer sensors included?
- For efficiency from inner sensors
 - Cannot just ask for any hit within time window
 - Probably always a hit somewhere so again need hit close to projection

Paul Dauncey

Conclusions

- Main aim of CERN beam test is MIP efficiency measurement
 - Assuming no electron beam available
- Efficiency calculation is not trivial
 - Need to do full alignment of sensors
 - Need to have track pattern recognition and fit reconstruction code
 - Need to consider masking, dead areas and memory saturation effects
- Ideally would start on this before doing to the beam test
 - Can use MC data for this