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Abstract

The Collins mechanism provides a non-perturbative explanation for the large single-spin asym-

metries found in hard semi-inclusive reactions involving a transversely polarized nucleon. However,

there are seemingly convincing reasons to suspect that the mechanism vanishes, and indeed it does

vanish in the naive parton model where a quark is regarded as an essentially “free” particle. We

give an intuitive analysis which highlights the difference between the naive picture and the realistic

one and shows how the Collins mechanism arises when the quark is described as an off-shell particle

by a field in interaction.
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I. INTRODUCTION

The Collins mechanism [1] provides a possible explanation of the very large single-spin

asymmetries – sometimes as big as 40% – found in semi-inclusive reactions like p↑p → πX

or ep↑ → eπX, where p↑ is a transversely polarized proton. The existence of these asym-

metries has been known for decades and one of the great puzzles has been the fact that it

is quite impossible to produce such large asymmetries via perturbative QCD mechanisms.

The Collins mechanism is a “soft” non-perturbative effect describing the fragmentation of

a transversely polarized quark into e.g. π + X. It makes the angular distribution of the

pion with respect to the direction of motion of the quark depend upon the direction of the

quark’s transverse polarization. But this feature is itself puzzling, since it is well known

[2, 3] that in the decay of a transversely polarized particle or resonance R↑ → π + X the

angular distribution W (θ, φ) of the pion cannot depend on the direction of the transverse

polarization of R , in any parity conserving theory. Indeed, as we shall see explicitly, the

Collins mechanism vanishes in the naive parton model where the quark is visualized as a

“free” particle. The Collins effect thus depends crucially on treating the quark as off-shell

and described by an interacting field.

It was at one time thought that the time-reversal invariance of QCD could be utilized to

prove the vanishing of the Collins mechanism, but Collins [1] pointed out a flaw in the

argument based upon a failure to distinguish between so-called in and out states in field

theory. Although this mathematical argument shows that the Collins mechanism need not

vanish, it does not provide an intuitive picture of what is happening.

In this paper we give an intuitive analysis of the Collins mechanism based upon rotational

invariance, which makes clear the difference between particle or resonance decay, which can-

not have a Collins effect, and quark fragmentation, which can.

In Section 2 we revisit the standard QCD picture for hard semi-inclusive reactions, stressing

the difference between treating the active quark as “free” and as an off-shell interacting

particle. Section 3 derives the angular distribution, contrasting the cases of “free” and in-

teracting quarks. The results are discussed in Section 4. Some technical details are relegated

to an Appendix.
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II. QCD ANALYSIS OF ep↑ → eπ X

For concreteness we shall present our analysis in the context of semi-inclusive deep in-

elastic lepton-proton scattering ( see Fig. 1 ) in which an unpolarized lepton interacts with

a transversely polarized proton and the final state pion is detected at angles (θ, φ) in the“γ”

p CM frame, with the proton moving along the OZ axis.
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FIG. 1: Feynman diagram for semi-inclusive scattering

Regarding Fig. 1 as a Feynman diagram, the amplitude for the hadronic part of the

process is given by

Hµ = Fβ(γµ)βαAα (1)

where Aα is the amplitude for the proton, momentum P , to emit a quark with four-

momentum p and Dirac index α, and Fβ is the amplitude for a quark of four-momentum k

and Dirac index β to fragment into a pion and some other particle X. As is usual in the

parton model, both Aα and Fβ are defined to include their adjacent quark propagators.

In QCD these amplitudes are given by:

Aα =

∫

d4xeip.x < X ′ | Ψα(x) | P > (2)

Fβ =

∫

d4ze−ik.z < π,X | Ψ̄β(z) | 0 > (3)

where kµ is a time-like four-vector, k0 > 0, and the hadronic tensor W µν is then
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W µν =
∑

X,X′

HµHν∗ (4)

Note that the πX final state is, strictly speaking, an out state, but this is irrelevant in

our analysis.

In these and all further expressions we are only interested in the general structure of the

amplitudes, so we will ignore numerical and other inessential factors Also, since we deal with

unpolarized leptons, we are only concerned with the part of W µν symmetric under µ ↔ ν.

Substituting Eq. (1) into Eq. (4) we obtain

W µν = ρµν
αβ

∑

X

FαF̄β (5)

where, as usual,

F̄β = F ∗
τ γ0

τβ (6)

and

ρµν
αβ = (γµΦγν)αβ (7)

with Φ the usual quark-quark correlation function

Φαβ =

∫

d4xe−ip.x < P | Ψ̄β(x)Ψα(0) | P > (8)

Since the labels µ, ν play no role in the following, aside from the symmetry under µ ↔ ν,

we shall suppress them in the following, simply writing the LHS of Eq. (7) as ραβ.

Consider now the structure of the q → πX fragmentation amplitude

Fβ ≡ Fβ(pπ; X,λX ; k)

=

∫

d4ze−ik.z < pπ; X,λX | Ψ̄β(z) | 0 > (9)

where λX is the helicity of X.

If Ψ̄(z) were a free field Ψ̄0(z) we could make the usual Fourier expansion into creation and

annihilation operators
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Ψ̄0
β(z) ∼

∑

λ

∫

d3p

Ep

{ūβ(p, λ)a†
0(p, λ)eip.z

+ v̄β(p, λ)b0(p, λ)e−ip.z} (10)

where Ep =
√

p2 + m2, and the subscript 0 on the operators signifies free field operators.

When Ψ̄(z) is a field in interaction we can still make a 3-dimensional Fourier expansion at

some instant of time, say t = 0. Then one finds [4], at arbitrary times t,

Ψ̄β(z) ∼
∑

λ

∫

d3p

Ep

{ūβ(p, λ)a†(p, λ; t)e−ip.z

+ v̄β(p, λ)b(p, λ; t)eip.z} (11)

where now the time dependence is non-trivial, being controlled by the Hamiltonian H:

a†(p, λ; t) = eiHta†(p, λ)e−iHt

b(p, λ; t) = eiHtb(p, λ)e−iHt (12)

This is to be contrasted with the free field case where

a†
0(p, λ; t) = eiEpta†

0(p, λ)

b0(p, λ; t) = e−iEptb0(p, λ) (13)

Of course the interacting a†(p, λ; t) and b(p, λ; t) are not simply one-particle creation and

annihilation operators. However, the spinors occurring in Eqs. (10) and (11) are the same

as in the free case i.e. are mass m spinors.

Bearing in mind Eq. (11) we have for the field operator appearing in Eqs. (3) and (9)

Ψ̄β(k) ≡

∫

d4ze−ik.zΨ̄β(z) =
1

Ek

∑

λ

{ūβ(k, λ)A†(k, λ)

+ v̄β(−k, λ)B(k, λ)} (14)

where
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A†(k, λ) ≡

∫

dte−ik0ta†(k, λ; t)

B(k, λ) ≡

∫

dte−ik0tb(−k, λ; t) (15)

As stressed earlier, these are not single particle creation and annihilation operators. How-

ever, acting on the vacuum state | 0 > they produce states which, as is shown in the Ap-

pendix, are eigenstates of momentum and energy with definite helicity and definite parity.

Thus we shall define

| kµ, λ)+ ≡ A†(k, λ) | 0 > (16)

and

| kµ, λ)− ≡ B(k, λ) | 0 > (17)

and the key point will be the fact that the states in Eqs. (16) and (17) have opposite

parity, as indicated by the labels +/-. We use the notation | ) to emphasize the fact that

these states are not necessarily one particle states. Hence we may write Eq. (9) in the form

Fβ(pπ; X,λX ; k) =
1

Ek

∑

λ

{ūβ(k, λ) < pπ; X,λX | kµ, λ)+

v̄β(−k, λ) < pπ; X,λX | kµ, λ)−} (18)

This is to be contrasted with the expression one obtains for the decay of a particle of

momentum k (or for the case of a free quark field) namely

F 0
β (pπ; X,λX ; k) =

1

Ek

∑

λ

ūβ(k, λ) < pπ; X,λX | k, λ > (19)

The analogue of the second term on the RHS of Eq.(18) is here absent, because, via Eq. (10),

it involves

∫

dte−ik0te−iEpt ∝ δ(k0 + Ep) = 0 (20)

since k0 > 0.
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III. THE HADRON ANGULAR DISTRIBUTION

It will suffice to consider the decay

“q” −→ π + X

in the CM system of the π and X i.e. where pπ + pX = 0, since using the properties of

the states | k, λ)+/− derived in the Appendix one can then derive the angular distribution

in any other frame.

Let us look first at the decay of a spin1/2 particle (equivalently, the case of a “free”

quark) where Eq. (19) holds. From Eq. (5) and (19)

W µν ∝ ρuu
λ′λ

∑

X

< pπ; X,λX | k, λ >< pπ; X,λX | k, λ′ >∗ (21)

where

ρuu
λ′λ = ūα(k, λ′)ραβuβ(k, λ) (22)

Rotational and parity invariance allow us to write, for the matrix element in Eq. (21), in

the frame where pπ = −pX

< pπ; X,λX | k, λ >= M(λX)eiλφd
1/2
λλX

(θ) (23)

where (θ, φ) are the polar angles of pπ and the reduced matrix element M(λX) is inde-

pendent of λ [3], and

M(−λX) = ηM(λX) (η = ±1) (24)

Then Eq. (21) becomes

W µν ∝ ρuu
λ′λe

iφ(λ′−λ)
∑

λX

| M(λX) |2 d
1/2
λ′λX

(θ)d
1/2
λλX

(θ) (25)

For a spin1/2 particle moving along OZ the dependence on the transverse polarization

is contained in the off diagonal helicity matrix elements
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ρuu
+− = ρuu∗

−+ =
1

2
(Px − iPy) (26)

The contribution from ρuu
+− to Eq. (25) is

ρuu
+−eiφ{| M(1/2) |2 d

1/2
1/2,1/2(θ)d

1/2
−1/2,1/2(θ)+ | M(−1/2) |2 d

1/2
1/2,−1/2(θ)d

1/2
−1/2,−1/2(θ)} (27)

= ρuu
+−eiφ | M(1/2) |2 {d

1/2
1/2,1/2(θ)d

1/2
−1/2,1/2(θ) + d

1/2
−1/2,−1/2(θ)d

1/2
1/2,−1/2(θ)} (28)

where we have used Eq. (24).

Now

dJ
−1/2,−1/2(θ) = dJ

1/2,1/2(θ), dJ
1/2,−1/2(θ) = −dJ

−1/2.1/2(θ) (29)

so that the expression in parenthesis in Eq. (28) vanishes. Similarly the term arising from

ρuu
−+ vanishes.

Hence, in the decay of a particle or a “free” quark “q” → π +X, the angular distribution

of the pion is independent of the transverse polarization of the decaying particle, i.e. the

Collins mechanism vanishes.

The crucial point leading to the above conclusion was our ability to factor out the reduced

matrix element terms | M(1/2) |2=| M(−1/2) |2 in going from Eq. (27) to Eq. (28). It is

this step that fails in the case of an interacting quark field. For the the analogoue of Eq. (21)

is, on putting Eq. (18) into Eq. (5),

W µν ∝ ρuu
λ′λ

∑

λX

M+M
′∗
+ + ρvv

λ′λ

∑

λX

M−M
′∗
− + ρuv

λ′λ

∑

λX

M−M
′∗
+ + ρvu

λ′λM+M
′∗
− (30)

where, for brevity we have used

M+/− ≡< pπ; X,λX | k, λ)+/−

M′
+/− ≡< pπ; X,λX | k, λ′)+/− (31)

and where, analogously to Eq. (22),

ρvv
λ′λ = v̄α(k, λ′)ραβvβ(k, λ)

ρuv
λ′λ = ūα(k, λ′)ραβvβ(k, λ)

ρvu
λ′λ = v̄α(k, λ′)ραβuβ(k, λ) (32)
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The analogues of Eqs. (23) and (24) are now

M+/− =< pπ; X,λX | k, λ)+/− = M+/−(λX)eiλφd
1/2
λ,λX

(θ) (33)

with

M+(−λX) = ηM+(λX) M−(−λX) = −ηM−(λX) (34)

Consider now the dependence of the angular distribution upon the transverse polarization

of the quark i.e. upon the terms in Eq. (30) involving ρ+− and ρ−+. For the terms containing

ρuu
+−, ρuu

−+, ρvv
+− and ρvv

−+ the argument is identical to the free particle case and the Collins

mechanism vanishes. But, for example, for the ρuv
+− term one has

ρuv
+−eiφ

∑

λX

M∗
+(λX)M−(λX)d

1/2
−1/2,λX

(θ)d
1/2
1/2,λX

(θ) =

ρuv
+−eiφ{M∗

+(1/2)M−(1/2)d
1/2
−1/2,1/2(θ)d

1/2
1/2,1/2(θ) +

M∗
+(−1/2)M−(−1/2)d

1/2
−1/2,−1/2(θ)d

1/2
1/2,−1/2(θ)} (35)

= ρuv
+−eiφM∗

+(1/2)M−(1/2){d
1/2
−1/2,1/2(θ)d

1/2
1/2,1/2(θ) − d

1/2
−1/2,−1/2(θ)d

1/2
1/2,−1/2(θ) (36)

where we have used Eq. (34).

Note the crucial difference: the minus sign in the parenthesis in Eq. (36) compared with

(28). Consequently the angular factor in Eq. (36) does not vanish and the Collins mechanism

survives. The other contributions, from ρuv
−+, ρvu

+− and ρvu
−+ also do not vanish, and there is

no cancellation between them.

Hence for the interacting, off-shell quark the Collins mechanism does not vanish, and the

fundamental reason is that the operator in Eq. (14) creates a superposition of states with

opposite parity, whereas in the case of a free field it creates a state with just one definite

parity.

IV. DISCUSSION

We have, for simplicity, discussed the case of the semi-inclusive production of pions, but,

in fact, the results hold equally well for any hadron h. Thus, in the fragmentation of a

transversely polarized off-shell quark “q” → h + X where the quark is described by an
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interacting QCD field, the angular distribution of the h can depend on the direction of the

quark transverse polarization i.e. the Collins mechanism is non-zero.

On the contrary, for a decaying particle, or when the quark is regarded as a “free” on-shell

particle, the Collins mechanism vanishes.

The key difference between the two cases is that the operator involved in the fragmenta-

tion amplitude

∫

d4ze−ik.z < h; X,λX | Ψ̄β(z) | 0 > (k0 > 0) (37)

i.e. the operator

Ψ̄β(k) =

∫

d4ze−ik.zΨ̄β(z) (38)

when acting on the vacuum creates a superposition of states with opposite parity when

it is an interacting field,

Ψ̄β(k) | 0 >=
1

Ek

∑

λ

{ūβ(k, λ) | k, λ)+ + v̄β(−k, λ) | k, λ)−} (39)

as can be seen from Eqs. (14) to (17), whereas it creates a state with definite parity

when it is a free field. The existence of a definite parity for the decaying particle is crucial

for the cancellation that causes the Collins mechanism to vanish. Some attempts have been

made to estimate the size of the Collins effect via dynamical calculations. For access to this

literature, see [5].

It is interesting to note that there is a well known example of this parity distinction

between free on-shell and interacting off-shell particles in the ancient literature [6]. In πN

elastic scattering the Born term shown in Fig. (2), is known to contribute to both the s and

p-wave πN states i.e.to states of opposite parity. Only when

s = (pπ + pN)2 −→ M2 (40)

where M is the nucleon mass i.e. when the exchanged nucleon is on the mass-shell,

corresponding to the exchanged object being a real particle with positive parity, does the

p-wave amplitude totally dominate.

10
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FIG. 2: Feynman diagram for πN scattering

Thus there is, in the end, no surprise that the non-vanishing of the Collins mechanism

is sensitive to whether the decaying quark is treated as a “free” on-shell particle or an

interacting off-shell one.
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APPENDIX: PROPERTIES OF THE STATES | k, λ)+/−

Let P̂ µ be the energy and momentum operators of the theory. Then

[P̂ µ, Ψ̄(z)] = −i
∂Ψ̄

∂zµ

(A.1)

Substituting Eq. (11) and then integrating with
∫

d4ze−ik.z, we obtain for the momentum

operators P̂
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∑

λ

[

P̂ , {ū(k, λ)A†(k, λ) + v̄(−k, λ)B(k, λ)}
]

=

∑

λ

{kū(k, λ)A†(k, λ) + kv̄(−k, λ)B(k, λ)} (A.2)

Multiplying respectively by γ0u(k, λ) and γ0v(−k, λ) to separate the A† and B terms we

get

[P̂ , A†(k, λ)] = kA†(k, λ) (A.3)

[P̂ , B(k, λ)] = kB(k, λ) (A.4)

from which follows that the states

| k, λ)+ = A†(k, λ) | 0 >

| k, λ)− = B(k, λ) | 0 > (A.5)

are eigenstates of momentum, with momentum k.

To study the energy we use the fact that

[P̂0, a
†(k, t)] = −i

∂a†(k, t)

∂t
(A.6)

so that, from Eq. (15)

[P̂0, A
†(k, λ)] =

∫

dte−ik0t
(

− i
∂a†(k, t)

∂t

)

(A.7)

Given that all such operator equations should really be considered within the framework

of test functions, we may integrate the RHS of Eq. (A.7) by parts, discarding the terms at

t = ±∞. Hence (A.7) becomes

[P̂0, A
†(k, λ)] = k0A

†(k, λ) (A.8)

A similar relation holds for B(k, λ). It follows that

P̂0 | k, λ)+/− = k0 | k, λ)+/− (A.9)
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Consider now the operation of space inversion

PΨ̄(z, t)P−1 = Ψ̄(−z, t)γ0 (A.10)

It is well known that for free fields this leads to

Pa†
0(k, λ)P−1 = a†

0(−k, λ)

Pb0(k, λ)P−1 = −b0(−k, λ) (A.11)

On comparing Eqs. (10) and (11) it is clear, for interacting fields, that the same results

will hold for a†(k, λ; t) and b(k, λ; t), hence that

PA†(k, λ)P−1 = A†(k̃, λ)

PB(k, λ)P−1 = −B(k̃, λ) (A.12)

where k̃ = (k0,−k).

It follows that the states | k, λ)+/− have opposite parity.

Finally, under a Lorentz transformation l

U(l)Ψ̄β(z)U(l−1) = Ψ̄α(lz)Dαβ(l) (A.13)

where Dαβ corresponds to the spinor transformation matrix Sαβ given in Bjorken and

Drell [7]. If we define, as in Eq. (14),

Ψ̄β(k) =

∫

d4ze−ik.zΨ̄β(z) (A.14)

then

U(l)Ψ̄β(k)U(l−1) =

∫

d4ze−ik.zU(l)Ψ̄β(z)U(l−1)

= Dαβ(l)

∫

d4ze−ik.zΨ̄α(lz)

= Dαβ(l)

∫

d4z′e−ik.l−1z′Ψ̄α(z′) (z′ = lz)

= Dαβ(l)

∫

d4z′e−ilk.z′Ψ̄α(z′)

= Ψ̄α(lk)Dαβ(l) (A.15)
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Using the expression Eq. (14) for Ψ̄β(k) yields

Ψ̄α(lk)Dαβ(l) =
1

Ek′

∑

λ

{ūα(k′, λ)A†(lk, λ)

+v̄α(−k′, λ)B(lk, λ)}Dαβ(l) (A.16)

where

k′ = lk (A.17)

Now [7]

ūα(k′, λ)Dαβ(l) = ūβ(k, λ′)D
1/2
λλ′ (r

−1) (A.18)

and

v̄α(k′, λ)Dαβ(l) = v̄β(k, λ′)D
1/2
λ′λ(r) (A.19)

where r is the Wick helicity rotation (analogous to the Wigner rotation). Thus

Ψ̄α(lk)Dαβ(l) =
1

Ek′

∑

λ

{ūβ(k, λ′)D
1/2
λλ′ (r

−1)A†(lk, λ)

+v̄β(−k, λ′)D
1/2
λ′λ(r)B(lk, λ)} (A.20)

Multiplying Eq. (A.13) first by [γ0u(k, λ)]β then by [γ0v(−k, λ)]β, and using (A.14) and

(A.20) we finally obtain

U(l)A†(k, λ)U(l−1) =
Ek

Ek′

D
1/2
λ′λ(r−1)A†(lk, λ′) (A.21)

U(l)B(k, λ)U(l−1) =
Ek

Ek′

D
1/2
λλ′ (r)B(lk, λ′) (A.22)

These imply that the states | k, λ)+/− transform just like genuine particle states under

rotations, and under boosts differ from particle states only by the factor Ek

Ek′
, which is

innocuous for our purposes [8].

14



Thus the states | k, λ)+/− possess all the properties required in the derivation of the

results in Sections II and III.
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