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tWe 
onsider a general formalism to 
ompute in
lusive polarised and un-polarised 
ross se
tions within pQCD and the fa
torisation s
heme, takinginto a

ount parton intrinsi
 motion in distribution and fragmentation fun
-tions, as well as in the elementary dynami
s. Surprisingly, the intrinsi
 par-toni
 motion, with all the 
orre
t azimuthal angular dependen
es, produ
esa strong suppression of the transverse single spin asymmetry arising fromthe Collins me
hanism. As a 
onsequen
e, and in 
ontradi
tion with ear-lier 
laims, the Collins me
hanism is unable to explain the large asymmetriesfound in p" p ! �X at moderate to large Feynman xF . The Sivers e�e
t isnot suppressed.



1. Introdu
tion and general formalismThe in
lusive produ
tion of large pT parti
les in the high energy 
ollision of twonu
leons has been for a long time a 
ru
ial testing ground for perturbative QCD;in su
h kinemati
al regions the partoni
 degrees of freedom dominate the hadroni
pro
esses, whi
h 
an be des
ribed in terms of quark and gluon dynami
s, 
oupledto non perturbative information { parton distribution (pdf) and fragmentation (�)fun
tions { gathered from other pro
esses and evolved to the proper s
ale via QCDevolution equations.In the simplest 
ase this translates into the well known expression:EC d�AB!CXd3pC = Xa;b;
;d Z dxa dxb dz fa=A(xa; Q2) fb=B(xb; Q2) (1)� ŝ�z2 d�̂ab!
ddt̂ (ŝ; t̂; û; xa; xb) Æ(ŝ+ t̂+ û)DC=
(z;Q2)= Xa;b;
;d Z dxa dxb fa=A(xa; Q2) fb=B(xb; Q2) (2)� 1�z d�̂ab!
ddt̂ (ŝ; t̂; û; xa; xb)DC=
(z;Q2) ;whi
h 
ombines all possible elementary QCD intera
tions ab ! 
d, with distribu-tion, f(x;Q2), and fragmentation,D(z;Q2), fun
tions: all partoni
 intrinsi
 motionshave been integrated over and the hadrons are 
onsidered as 
omposed of 
ollinearmassless quarks and gluons, ea
h 
arrying a fra
tion x of the parent momentum;similarly for the �nal quark fragmentation into a 
ollinear hadron with fra
tion zof the quark momentum. The energy-momentum 
onservation of the elementaryintera
tions, ŝ + t̂ + û = 0, allows to relate xa; xb and z, namely, in this 
ollinearpi
ture, xa xb z s = �xa t� xb u, where ŝ; t̂; û (s; t; u) are the Mandelstam variablesfor the partoni
 (hadroni
) pro
ess.Eq. (1) { taking into a

ount higher order 
ontributions to the elementary in-tera
tions { des
ribes su

essfully the highest energy 
ross se
tion data, in
ludingthe most re
ent ones from RHIC [1℄. However, already starting from the pioneer-ing work of Feynman, Field and Fox [2℄, several papers have shown that intrinsi
transverse momenta k?'s have to be expli
itly introdu
ed into Eq. (1) in order tobe able to explain data at moderately large pT , for produ
tion of pions and photons[3, 4℄; without them the theoreti
al (
ollinear) 
omputations would give results insome 
ases mu
h smaller (up to a fa
tor 10 or even more) than experiment.Taking into a

ount intrinsi
 transverse momenta is not an entirely straight-forward matter. In the pure parton model, where partons are regarded as physi
alparti
les with de�nite mass (usually assumed to be negligible), the standard 
ollinearparton density fa=A(xa) is simply generalised to f̂a=A(xa;k?a), where k?a is the par-ton momentum perpendi
ular to the nu
leon momentum, andfa=A(xa) = Z d2k?a f̂a=A(xa;k?a) ; (3)1



where, to be pre
ise, xa is the light-
one momentum fra
tion of parton a insidehadron A. Similarly, the fragmentation fun
tion is generalised to D̂C=
(z;k?C),where k?C is the transverse momentum of the observed hadron C with respe
t tothe fragmenting parton 
. All dynami
 partoni
 
al
ulations are then 
arried outwith in
lusion of the intrinsi
 transverse momenta k?'s.This natural generalisation apparently modi�es Eq. (1) into:EC d�AB!CXd3pC = (4)Xa;b;
;d Z dxa dxb dz d2k?a d2k?b d3k?C Æ(k?C � p̂
) f̂a=A(xa;k?a;Q2) f̂b=B(xb;k?b;Q2)ŝ2�xaxbz2s J(k?C) d�̂ab!
ddt̂ (ŝ; t̂; û; xa; xb) Æ(ŝ+ t̂+ û) D̂C=
(z;k?C ;Q2) ;where k?a (k?b) and k?C are respe
tively the transverse momenta of parton a (b)with respe
t to hadron A (B), and of hadron C with respe
t to parton 
, whi
h in the
ase of light quarks or gluons is taken to be massless. We have formally extendedour de�nition of the 2-ve
tor k?C into a 3-ve
tor via the Æ-fun
tion Æ(k?C � p̂
).Negle
ting parton masses, the fun
tion J is given by [4℄J(k?C) = �EC +qp2C � k2?C�24(p2C � k2?C) � (5)Eq. (4) has been widely used in the literature, albeit without the fa
tor J , whi
hequals 1 if we negle
t the �nal hadron mass and k2?C in Eq. (5). Note that the fa
torŝ=(�z2) in Eq. (1) follows from the fa
tor ŝ2=(� xaxb z2s) in (4) sin
e for 
ollinear
ollisions ŝ = xaxb s. Although it is true that even with k?, ŝ ' xaxb s, the use ofthis approximation has been shown by Cahn [5℄ to lead to azimuthal asymmetrieswhi
h are physi
ally impossible.The k? dependent pdf and � are usually assumed to have simple fa
torised andGaussian forms, like:f̂q=p(x;k?;Q2) = fq=p(x;Q2) g(k?) = fq=p(x;Q2) �2� e��2 k2? ; (6)so that hk2?i = 1=�2 ; Z d2k? f̂q=p(x;k?;Q2) = fq=p(x;Q2) ; (7)where � might depend on x and the energy; it is usually assumed to be 
avourindependent. A similar fa
torisation is adopted for the k? dependent fragmenta-tion fun
tions. The elementary 
ross se
tions d�̂=dt̂ depend, via the elementaryMandelstam variables ŝ; t̂ and û, on the intrinsi
 motions.The QCD fa
torisation theorem impli
itly used in Eq. (4) { with unintegratedk? dependent distribution and fragmentation fun
tions { has never been formally2



proven in general [6℄, but only for the Drell-Yan pro
ess, for the two-parti
le in
lusive
ross se
tion in e+e� annihilation [7℄ and, re
ently, for SIDIS pro
esses in parti
ularkinemati
al regions [8℄. Moreover, in QCD the parton model is a leading-twistapproximation to the theory, whereas intrinsi
 transverse e�e
ts are of higher-twistand should therefore be in
orporated in a 
onsistent higher-twist development ofthe theory. Unfortunately, su
h a treatment is very 
ompli
ated and introdu
es awhole set of new unknown soft fun
tions and quark-gluon 
orrelations with un
learpartoni
 interpretation.It turns out, however, that some partoni
 e�e
ts of transverse momentum aresurprisingly large and 
an generate phenomena whi
h would be impossible to repro-du
e in the 
ollinear treatment:� the presen
e of an intrinsi
 k? alters the relationship between the light-
onemomentum fra
tion x of the parton and the Bjorken xBj, so that x 6= xBj.Although the shift is small and proportional to k2?=(xps)2, it 
an have asubstantial e�e
t in the region of x where the parton densities are varyingrapidly. This is a kind of enhan
ed higher-twist e�e
t and 
an lead up to anorder of magnitude 
hange in a 
ross se
tion. Similarly, due to intrinsi
 motion,the partoni
 s
attering angle in the pp 
.m. frame might be mu
h smallerthan the hadroni
 produ
tion angle, thus enhan
ing the large pT in
lusiveprodu
tion of parti
les.� In the presen
e of transverse momentum, 
ertain spin-dependent e�e
ts 
an begenerated by soft me
hanisms and 
an be used to understand the large trans-verse single spin asymmetries (SSA) found in many rea
tions like A" + B !C +X and the large hyperon polarisations in pro
esses like A+B ! H"+X.At leading twist there are 4 su
h soft me
hanisms, often referred to as \oddunder naive time reversal":a) Sivers distribution fun
tion [9℄: in a transversely polarised nu
leon withmomentum p and polarisation ve
tor P , the number density of quarks withmomentum (xp;k?) is allowed to depend upon P � (p� k?); in other words,the Sivers distribution fun
tion represents the azimuthal dependen
e (aroundp) of the number density of unpolarised quarks inside a transversely polarisedproton.b) Collins fragmentation fun
tion [6℄: in the fragmentation of a transverselypolarised quark with momentumpq and polarisation ve
tor Pq, q ! C+X, thenumber density of hadrons C with momentum (zpq;k?) is allowed to dependon P q � (pq�k?); in other words the Collins fragmentation fun
tion representsthe azimuthal dependen
e (around pq) of the number density of unpolarisedhadrons resulting from the fragmentation of a transversely polarised quark.
) Boer-Mulders distribution fun
tion [10℄: in an unpolarised nu
leon a quarkwith momentum (xp;k?) is allowed to have a non-zero polarisation alongp � k?; that is, the Boer-Mulders distribution fun
tion represents the az-imuthal dependen
e (around p) of the number density of transversely polarised3



quarks inside an unpolarised proton.d) polarising fragmentation fun
tion [11, 12℄: in the fragmentation of an unpo-larised quark with momentum pq a �nal spin 1/2 hadron C with momentum(zpq;k?) is allowed to have a non-zero polarisation along pq � k?; that is,the polarising fragmentation fun
tion represents the azimuthal dependen
e(around pq) of the number density of transversely polarised hadrons resultingfrom the fragmentation of an unpolarised quark.It should be noted that in the pure parton model, where partons are treated asphysi
al free parti
les, all these e�e
ts vanish [13℄.In the present paper we study transverse single spin asymmetries, in p" p! �Xpro
esses, taking into a

ount all parton intrinsi
 motions in initial and �nal hadronsand in the elementary dynami
s. This generalises previous work in whi
h only theone k? essential to the me
hanism was taken into a

ount, either in the initialpolarised nu
leon (Sivers e�e
t) or in the �nal quark fragmentation (Collins e�e
t),and the k? distribution was somewhat simpli�ed into essentially a two-dimensionalÆ-fun
tion [14, 15, 16℄.For the reasons explained above, we have not attempted to 
onstru
t a fully
onsistent next-to-leading-twist treatment. Our strategy is to keep only the en-han
ed higher-twist terms and to 
al
ulate partoni
 heli
ity amplitudes as if thepartons were parti
les. We believe this approa
h is physi
ally meaningful sin
e ittakes into a

ount the most important higher-twist terms in the 
ross se
tion andthe asymmetry. Three of the above spin e�e
ts, a){
), 
an 
ontribute to pion SSA,but in this paper we wish to explore the generation of SSA due to the existen
e ofthe Collins fragmentation fun
tion alone, for whi
h there is some eviden
e in thepolarised lepto-produ
tion data of the HERMES 
ollaboration [17, 18℄. The Boer-Mulders e�e
t 
an also 
ontribute to transverse single spin asymmetries but, at leastfor p" p! �X pro
esses, it would 
ontribute mainly at negative xF values, whereasdata are in the positive xF region. The Sivers e�e
t is also relevant, and has beenstudied in a parallel paper [4℄. In fa
t we shall show that the 
onsistent treatmentof all intrinsi
 partoni
 motions indu
es a major suppression of the 
ontribution tothe asymmetry due to the Collins me
hanism and renders it in
apable of produ
ing,by itself, the kind of asymmetries measured in p" p! �X rea
tions [19, 20℄.This result modi�es the 
on
lusions of Ref. [15, 16℄, where the Collins 
ontribu-tion to SSA in p" p! �X pro
esses was 
omputed adopting a simpli�ed kinemati
al
on�guration: it appeared that the Collins fragmentation fun
tion 
ould, althoughwith some diÆ
ulty, explain the E704 data [19℄. Note that the results on SSA ob-tained using the Sivers distribution fun
tion, with a similar simpli�ed kinemati
al
on�guration [14℄ are, instead, essentially 
on�rmed by the exa
t treatment of allintrinsi
 partoni
 motions [4℄.In order to study spin asymmetries we have to introdu
e spins in the QCD hards
attering pro
esses. Eq. (1) holds also for polarised pro
esses, (A;SA)+(B;SB)!C +X [21℄, provided one introdu
es in the fa
torisation s
heme, in addition to the4



distribution fun
tions, the heli
ity density matri
es whi
h des
ribe the parton spinstates. This 
an be done also for Eq. (4) with the result:EC d�(A;SA)+(B;SB)!C+Xd3pC = Xa;b;
;d;f�g Z dxa dxb dz16�2xaxbz2s d2k?a d2k?b d3k?C Æ(k?C � p̂
)J(k?C) �a=A;SA�a;�0a f̂a=A;SA(xa;k?a) �b=B;SB�b;�0b f̂b=B;SB(xb;k?b) (8)M̂�
;�d;�a;�b M̂��0
;�d;�0a;�0b Æ(ŝ+ t̂+ û) D̂�C ;�C�
;�0
 (z;k?C) ;where we have used the notation f�g to imply a sum over all heli
ity indi
es. InEq. (8) �a=A;SA�a;�0a is the heli
ity density matrix of parton a inside the polarised hadronA whose polarisation state is generi
ally labelled by SA (for spin 1=2 parti
les thismeans longitudinal or transverse polarisation); similarly for parton b inside hadronB with spin SB. The M̂�
;�d;�a;�b's are the heli
ity amplitudes for the elementarypro
ess ab ! 
d, normalised so that the unpolarised 
ross se
tion, for a 
ollinear
ollision, is given by d�̂ab!
ddt̂ = 116�ŝ2 14 X�a;�b;�
;�d jM̂�
;�d;�a;�bj2 : (9)D̂�C ;�0C�
;�0
 (z;k?C) is the produ
t of fragmentation amplitudes for the 
! C+X pro
essD̂�C ;�0C�
;�0
 =PZ X;�X D̂�X ;�C ;�
 D̂��X ;�0C;�0
 ; (10)where the PZ X;�X stands for a spin sum and phase spa
e integration over all unde-te
ted parti
les, 
onsidered as a system X. The usual unpolarised fragmentationfun
tion DC=
(z), i.e. the number density of hadrons C resulting from the fragmen-tation of an unpolarised parton 
 and 
arrying a light-
one momentum fra
tion z,is given by DC=
(z) = 12 X�
;�C Z d2k?C D̂�C ;�C�
;�
 (z;k?C) : (11)Eq. (8) 
an be formally simpli�ed, showing its physi
al meaning, by noti
ingthat: X�a;�b;�0a;�0b;�d �A;SA�a;�0a �B;SB�b;�0b M̂�
;�d;�a;�b M̂��0
;�d;�0a;�0b = �0�
;�0
(
) = ��
;�0
 Tr�0(
) ; (12)where ��
;�0
 is the normalised heli
ity density matrix of parton 
 produ
ed in theab ! 
d pro
ess, with initially polarised partons a and b; the normalisation fa
torTr�0(
) is related to the polarised 
ross se
tion for a 
ollinear 
ollision:Tr�0(
) = (32�2ŝ2) d2�̂(a;sa)+(b;sb)!
+ddt̂ d�̂ ; (13)5



where �̂ is the azimuthal angle of parton 
 in the partoni
 
enter of mass frame.Moreover, X�
 �0
;�C ��
;�0
 D̂�C ;�C�
;�0
 (z;k?C) = D̂C=
;s
 (z;k?C) ; (14)is just the fragmentation fun
tion of a polarised parton 
, with spin 
on�gurations
, into a hadron C, whose spin is not observed.Using Eqs. (12)-(14), Eq. (8) 
an be written as:EC d�(A;SA)+(B;SB)!C+Xd3pC = Xa;b;
;d Z dxa dxb dz d2k?a d2k?b d3k?C Æ(k?C � p̂
)f̂a=A;SA(xa;k?a) f̂b=B;SB(xb;k?b) 2ŝ2xaxbz2s J(k?C)d2�̂(a;sa)+(b;sb)!
+ddt̂ d�̂ Æ(ŝ+ t̂+ û) D̂C=
;s
(z;k?C) ; (15)whi
h is the analogue of Eq. (4) in the polarised 
ase.Eq. (15) shows 
learly the fa
torised stru
ture and the partoni
 interpretation:inside polarised hadrons one has polarised partons with spin 
on�gurations sa andsb, whi
h intera
t via pQCD pro
esses, leading to a �nal polarised parton, with spin
on�guration s
, whi
h fragments into the observed �nal hadron. For the initial and�nal step { the determination of the parton polarisation from the hadron polarisationand the fragmentation of the polarised parton { one has to rely on distribution andfragmentation fun
tions; some of them are known from other pro
esses or from the-oreti
al models and some of them, in parti
ular when allowing for intrinsi
 motions,are new and unexplored.Although Eq. (15) has a simple physi
al interpretation, it is more 
onvenient tostudy the s
attering pro
ess with the heli
ity formalism of Eq. (8); when dealingwith heli
ities and heli
ity density matri
es all spins have a well de�ned interpreta-tion 
on
erning their dire
tions [22℄, and this is 
ru
ial if we are taking into a

ountall parton transverse motions, so that there are several transverse spin dire
tions.Sin
e the dire
tion of motion of the parton does not 
oin
ide with that of its parenthadron, the longitudinal and transverse dire
tion of the parton spin will also bedi�erent from the longitudinal and transverse dire
tion of the parent hadron spin.The partoni
 distribution is usually regarded, at Leading Order, as the in
lusive
ross se
tion for the pro
ess A ! a + X; therefore the heli
ity density matrix ofparton a inside a hadron A with polarisation SA 
an be written as�a=A;SA�a;�0a f̂a=A;SA(xa;k?a) = X�A;�0A �A;SA�A;�0A PZ XA;�XÂF�a;�XA;�A F̂��0a;�XA ;�0A (16)= X�A;�0A �A;SA�A;�0A F̂ �a;�0a�A;�0A ; (17)6



having de�ned F̂ �a;�0a�A;�0A �PZ XA;�XÂF�a;�XA;�A F̂��0a;�XA;�0A ; (18)and where the PZ XA;�XAstands for a spin sum and phase spa
e integration over allundete
ted remnants of hadron A, 
onsidered as a system XA and the F̂ 's are theheli
ity distribution amplitudes for the A! a+X pro
ess.Noti
e that Eq. (17) relates the heli
ity density matrix of parton a to the heli
itydensity matrix of hadron A. The heli
ity density matrix des
ribes the spin orienta-tion of a parti
le in its heli
ity rest frame [22℄; for a spin 1/2 parti
le, Tr (�i�) = Pi isthe i-
omponent of the polarisation ve
tor P in the heli
ity rest frame of the parti-
le. In this sense Eq. (17) relates the hadron polarisation to the parton polarisation,whi
h have both to be de�ned and interpreted in the proper rest frames.The distribution fun
tion of parton a inside the polarised hadron A;SA is givenby f̂a=A;SA(xa;k?a) = X�a;�A;�0A �A;SA�A;�0AF̂ �a;�a�A;�0A (19)and the usual unpolarised distribution fun
tion fa=A(xa), i.e. the number density ofpartons a inside an unpolarised parton A, 
arrying a light-
one momentum fra
tionxa, is given by fa=A(xa) = 12 X�a;�A Z d2k?a F̂ �a;�a�A;�A : (20)Similar expressions for the fragmentation pro
ess have already been introdu
edin Eqs. (10) and (11).By using Eq. (17), Eq. (8) 
an be written asEC d�(A;SA)+(B;SB)!C+Xd3pC = Xa;b;
;d;f�g Z dxa dxb dz16�2xaxbz2s d2k?a d2k?b d3k?C Æ(k?C � p̂
)J(k?C) �A;SA�A;�0A F̂ �a;�0a�A;�0A �B;SB�B;�0B F̂ �b;�0b�B;�0B M̂�
;�d;�a;�b M̂��0
;�d;�0a;�0b Æ(ŝ+ t̂+ û) D̂�C ;�C�
;�0
 : (21)Eq. (21) 
ontains all possible 
ombinations of di�erent distribution and fragmenta-tion amplitudes: these 
ombinations have partoni
 interpretations and are relatedto the k? and spin dependent fragmentation and distribution fun
tions dis
ussedabove and, for example, in Refs. [23℄ and [24℄. Noti
e that, even though Eq. (4), forthe unpolarised 
ross se
tion, looks intuitively 
orre
t and 
onvin
ing, Eq. (21), ifCollins and Boer-Mulders e�e
ts are operative, will yield a di�erent result, i.e. with�I�I ;�0I = (1=2) Æ�I ;�0I (I = A;B), Eq. (21) 
ontains terms not in
luded in Eq. (4),that is the terms o�-diagonal in the parton heli
ities. We have 
he
ked numeri
allythat these 
ontributions are negligible in the unpolarised 
ross se
tion. All this willbe dis
ussed in detail in a forth
oming paper [25℄, where all 
ontributions to singleand double spin asymmetries will be examined, together with the parity and k?7



properties of the distribution and fragmentation amplitudes. Here we are only 
on-sidering the pro
ess p" p ! �X and are fo
ussing only on the 
ontribution of Collinsme
hanism [6℄, that is the azimuthal dependen
e of the number of pions 
reated inthe fragmentation of a transversely polarised quark. The unpolarised 
ross se
tionwill be 
omputed a

ording to Eq. (4), taking into a

ount the intrinsi
 transversemotion of all partons (see also Ref. [4℄).2. Single Spin Asymmetries and Collins me
hanism for pion produ
tionLet us then 
onsider the pro
esses p"(p#) p ! �X; we study them in the pp
enter of mass frame, with the polarised beam moving along the positive Z-axis andthe pion produ
ed in the XZ plane with (p�)x > 0 values. The " (#) is de�nedas the +Y (�Y ) dire
tion. We then have, with SA = "; #, and with an unpolarisedhadron B (SB = 0),�A;"#�A;�0A = 12  1 �i�i 1 ! �B;0�B;�0B = 12  1 00 1 ! � (22)The 
omputation of the single spin asymmetryAN = d�" � d�#d�" + d�# (23)requires evaluation and integration, for ea
h elementary pro
ess ab ! 
d, of thequantity [see Eq. (21)℄�(SA; SB) �Xf�g �A;SA�A;�0A F̂ �a;�0a�A;�0A �B;SB�B;�0B F̂ �b;�0b�B;�0B M̂�
;�d;�a;�b M̂��0
;�d;�0a;�0b D̂��
;�0
 ; (24)where D̂��
;�0
 is de�ned as in Eq. (10), for pion produ
tion. From Eqs. (22) and(24) one has that the numerator of AN is proportional to�("; 0) � �(#; 0) =Xf�g (�i)2 hF̂ �a;�0a+;� � F̂ �a;�0a�;+ i F̂ �b;�0b�B;�B M̂�
;�d;�a;�b M̂��0
;�d;�0a;�0b D̂��
;�0
 ;(25)while the denominator 
ontains:�("; 0)+�(#; 0) =Xf�g 12 hF̂ �a;�0a+;+ + F̂ �a;�0a�;� i F̂ �b;�0b�B;�B M̂�
;�d;�a;�b M̂��0
;�d;�0a;�0bD̂��
;�0
 : (26)In the equations above and in the sequel + and � stand for +1=2 and �1=2 heli
ities,when referring to nu
leons or quarks, and for +1 and �1 heli
ities, when referringto gluons.As we have said, in this paper we are fo
ussing solely on the Collins me
hanismand we do not 
onsider all possible 
ontributions to AN , whi
h will be dis
ussed8



elsewhere [25℄. Therefore, we do not 
onsider the possibility of �nding transverselypolarised quarks inside the unpolarised proton B [10℄ or the possibility of havingdi�erent total numbers of quarks, at di�erent k? values, inside the transverselypolarised proton A [9℄. This does not imply that these other e�e
ts whi
h arenegligible for the unpolarised 
ross se
tion are negligible for the SSA; simply thatwe wish to explore to what extent the Collins me
hanism alone is able to explain themeasured transverse single spin asymmetries. As a 
onsequen
e, the F̂ -terms o�-diagonal in �b; �0b (while diagonal in �B; �0B) and the F̂ -terms o�-diagonal in �A; �0A(while diagonal in �a; �0a) will be negle
ted. The Collins me
hanism 
orresponds tothe terms o�-diagonal in the fragmenting quark heli
ities �
; �0
. Taking all this intoa

ount, a partial summation in Eq. (25) obtains�("; 0) ��(#; 0) =Xf�g (�i)2 �hF̂+;�+;� � F̂+;��;+ ia=A f̂b=B M̂�
;�d;+;�b M̂���
;�d;�;�b D̂��
;��
 + (27)hF̂�;++;� � F̂�;+�;+ ia=A f̂b=B M̂�
;�d;�;�b M̂���
;�d;+;�b D̂��
;��
 � ;where we have exploited the fa
t that, by parity invarian
e,F̂ �b;�b+;+ + F̂ �b;�b�;� = f̂b=B ; (28)independently of the value of �b.The same pro
edure applied to Eq. (26) reveals that the denominator of AN isjust twi
e the unpolarised 
ross se
tion, as given by Eq. (4).Eq. (27) 
an be further simpli�ed by exploiting the dynami
al and the parityproperties of the heli
ity amplitudes appearing in it. This requires some 
areful
onsiderations.� Whereas the hadroni
 pro
ess p" p ! �X takes pla
e, a

ording to our 
hoi
e,in the XZ plane, all other elementary pro
esses involved: A(B)! a(b) +X,ab! 
d and 
! �+X, do not; all parton and hadron momenta, pa; pb; pC ,have transverse 
omponents k?a; k?b; k?C and this 
ompli
ates remarkablythe kinemati
s. For example, the elementary QCD pro
ess ab ! 
d, whoseheli
ity amplitudes are well known in the ab 
enter of mass frame, is not,in general, a planar pro
ess anymore when observed from the pp 
enter ofmass frame. Similarly, as we 
ommented, the spin properties des
ribed byheli
ity density matri
es have 
lear physi
al interpretations in ea
h parti
le'sown heli
ity rest frame, but not ne
essarily in the pp 
enter of mass frame.Of 
ourse, one 
an always boost and rotate from one frame into another, butthis introdu
es phases in the heli
ity amplitudes, whi
h have to be properlya

ounted for. 9



� We refer all angles to the pp 
.m. frame, in whi
h p̂i = (�i; �i), (i = a; b; 
; d).Then the distribution fun
tions of the polarised proton A des
ribe pro
essestaking pla
e in the plane de�ned by Z and the pa dire
tion, (�a; �a). Therefore[22, 25℄ F̂�a;�XA;�A(xa;k?a) = F�a;�XA ;�A(xa; k?a) exp[i�A�a℄ (29)and F̂ �a;�0a�A;�0A(xa;k?a) = F �a;�0a�A;�0A(xa; k?a) exp[i(�A � �0A)�a℄ ; (30)where k?a = jk?aj; F �a;�0a�A;�0A(xa; k?a) has the same de�nition as F̂ �a;�0a�A;�0A(xa;k?a),Eq. (18), with F̂ repla
ed by F .The parity properties of F�a;�XA ;�A(xa; k?a) are the usual ones valid for heli
ityamplitudes in the �a = 0 plane [22℄,F��a;��XA ;��A = � (�1)SA�sa�SXA (�1)�A��a+�XA F�a;�XA;�A ; (31)where � is an intrinsi
 parity fa
tor su
h that �2 = 1. These imply:F��a;��0a��A;��0A = (�1)2(SA�sa) (�1)(�A��a)+(�0A��0a) F �a;�0a�A;�0A : (32)� Let us 
onsider now the elementary partoni
 amplitudes. As already remarked,the hard partoni
 intera
tions, a(pa) + b(pb) ! 
(p
) + d(pd), take pla
e outof the XZ plane, whi
h we have 
hosen as the plane of the overall p" p! �Xpro
ess. One 
ould 
ompute the heli
ity amplitudes for these generi
 pro
essesamong massless parti
les using te
hniques well known in the literature, likethose explained in Chapter 10 of Ref. [22℄. On the other hand, the expli
itexpressions and the parity properties of the heli
ity amplitudes M̂0, whi
happly when the elementary s
atterings o

ur in the ab 
.m. frame, in the XZplane, are well known. Therefore, rather than 
omputing dire
tly the generi
heli
ity amplitudes M̂ , we prefer to relate them to the known amplitudes M̂0.To rea
h the simple 
on�guration of the M̂0 amplitudes, starting from thegeneri
 
on�guration pa; pb, we have to perform a boost in the dire
tion de-termined by (pa + pb) so that the boosted three-ve
tor (p0a + p0b) is equal tozero. This will provide us with a 
.m.-like referen
e frame S0 where the partonsa and b 
ollide head-on. Here the parton a and the parton 
, resulting fromthe hard intera
tion between a and b, will have dire
tions identi�ed by (�0a; �0a)and (�0
; �0
) respe
tively. In general, the parton momenta in S0 are related tothe initial ones (before the boost) by:p0i = pi � qq0 +pq2  pi � qpq2 + p0i! (33)where i = a; b; 
; d and q� = (q0;q) = p�a + p�b .10



We need now to perform two subsequent rotations, one around the Z axis byan angle �0a, and one around the Y axis, by an angle �0a, su
h that the 
ollisionaxis of the two 
olliding initial partons turns out to be aligned with the Z axis.We 
all this frame S00.Under these boost and rotations the heli
ity states and 
onsequently the s
at-tering amplitudes a
quire phases, �a;b;
;d and ~�a;b;
;d:M̂�
;�d;�a;�b = M̂S00�
;�d;�a;�b e�i(�a�a+�b�b��
�
��d�d) e�i[(�a��b)~�a�(�
��d)~�
℄ ; (34)where �j and ~�j (j = a; b; 
; d) are de�ned by [22℄
os �j = 
os �q sin �j � sin �q 
os �j 
os(�q � �j)sin �qpj (35)sin �j = sin �q sin(�q � �j)sin �qpj ; (36)and ~�j = �0j + �0j ; (37)where 
os �0j = 
os �q sin �0j � sin �q 
os �0j 
os(�q � �0j)sin �qp0j (38)sin �0j = � sin �q sin(�q � �0j)sin �qp0j ; (39)
os �0j = 
os �0a � 
os �0j 
os �p0ap0jsin �0j sin �p0ap0j (40)sin �0j = sin �0a sin(�0a � �0j)sin �p0ap0j ; (41)and the polar angles (�0j; �0j) are determined via Eq. (33). Here �pipj (0 ��pipj � �) is the angle between pi and pj, and so on. Noti
e that �0a = 0.In the S00 frame the dire
tion of the parton 
 is 
hara
terised by an azimuthalangle �00
 given bytan�00
 = sin �0
 sin(�0
 � �0a)sin �0
 
os(�0
 � �0a) 
os �0a � 
os �0
 sin �0a � (42)A �nal rotation around Z of an angle �00
 will then �nally bring us to the
anoni
al 
on�guration in whi
h the partoni
 pro
ess is a 
.m. one in the XZplane. This introdu
es another phase. As a result of the performed boost and11



rotations the elementary s
attering amplitudes 
omputed in the hadroni
 
.m.system (the one where we are studying the hadroni
 
ross se
tion) are relatedto the heli
ity amplitudes 
omputed in the partoni
 
.m. system (in the XZplane, �
 = 0) by:M̂�
;�d;�a;�b= M̂0�
;�d;�a;�b e�i(�a�a+�b�b��
�
��d�d) e�i[(�a��b)~�a�(�
��d)~�
℄ ei(�a��b)�00
(43)with �00
 , �j and ~�j de�ned in Eqs. (35){(42); Eq. (33) allows to fully expressthe amplitudes in terms of the pp 
.m. variables pi. The parity properties ofthe 
anoni
al 
.m. amplitudes M̂0 are the usual ones:M̂0��
;��d;��a;��b = �a�b�
�d(�1)sa+sb�s
�sd (�1)(�a��b)�(�
��d)M̂0�
;�d;�a;�b ;(44)where �i is the intrinsi
 parity fa
tor for parti
le i.� Let us �nally 
onsider the fragmentation pro
ess. We take as independentvariables, in the pp 
.m. frame, the four-momentum of the �nal hadronp�C � p�� = (qp2T + p2L; pT ; 0; pL) (whose three-momentum, a

ording to our
hoi
e, lies in the hadroni
 XZ plane and where we negle
t the pion mass),the intrinsi
 transverse momentum k?C � k?� = (k?�; �k?� ; �k?�) of the �nalpion with respe
t to p
 (k?� � p
 = 0), and the light-
one momentum fra
tionz = p+� =p+
 .The parity properties of the fragmentation amplitudes, Eq. (10), are simple {analogous to the ones for the distribution amplitudes, Eqs. (31) and (32) { ina frame SH in whi
h the parton 
 moves along the ZH -axis. This frame 
an berea
hed from the hadroni
 pp frame by performing two rotations: �rst aroundZ by an angle �
 and then around the new Y -axis by an angle �
, whi
h bringsthe 3-momentum p
 of parton 
 along the new ZH -axis. In the frame SH theazimuthal angle �H� identifying the dire
tion of the �nal dete
ted pion (whi
h
oin
ides with the azimuthal angle of k?� in SH) is given, in terms of our
hosen pp 
.m. variables, bytan �H� = � pTqE2� � k2?� vuut1 �  k?� � pL 
os �k?�pT sin �k?� !2 tan �k?� ; (45)where E� = qp2T + p2L is the energy of the �nal pion.The analogue of Eqs. (29), (30) and (32), for the fragmentation of a parton 
into a pion, readsD̂�X ;�
(z;k?�) = D�X ;�
(z; k?�) exp[i�
�H� ℄ ; (46)D̂��
;�0
 = D��
;�0
 exp[i(�
 � �0
)�H� ℄ ; (47)12



with the parity relationshipsD���
 ;��0
 = (�1)2s
 (�1)�
+�0
 D��
;�0
 ; (48)where D��
;�0
 is de�ned a

ording to Eq. (10), in the 
ase in whi
h the hadronC is a spinless parti
le (pion),D��
;�0
(z; k?�) =PZ X;�X D�X ;�
D��X ;�0
 : (49)By exploiting the above angular and parity relations, Eqs. (30), (32), (43), (44),(47) and (48), we 
an now further simplify Eq. (27). One obtains:�("; 0)� �(#; 0) = �iXf�g hf̂b=B M̂0�
;�d;+;�b M̂0 ���
;�d;�;�b D��
;��
inF+�+� 
os[�a + �00
 � �a � ~�a + 2�
(�
 + ~�
 + �H� )℄ (50)� F+��+ 
os[�a � �00
 + �a + ~�a � 2�
(�
 + ~�
 + �H� )℄o ;where we have also used the fa
t that partons a and 
, 
arrying transverse polarisa-tion, are quarks or antiquarks, that is sa = s
 = 1=2.Let us �nally perform the remaining sum over heli
ities in Eq. (50). The onlytypes of elementary intera
tions 
ontributing are qaqb ! q
qd (generi
ally denotedas qq) and qg ! qg (generi
ally denoted as qg), where qa = u; d; s; �u; �d; �s and so on.The only independent heli
ity amplitudes M̂0 for the qq pro
esses are:M̂0+;+;+;+ = M̂0�;�;�;� � (M̂01 )qqM̂0�;+;�;+ = M̂0+;�;+;� � (M̂02 )qq (51)M̂0�;+;+;� = M̂0+;�;�;+ � (M̂03 )qq :and, for the qg pro
esses,M̂0+;1;+;1 = M̂0�;�1;�;�1 � (M̂01 )qg M̂0�;1;�;1 = M̂0+;�1;+;�1 � (M̂02 )qg : (52)At Leading Order all su
h amplitudes are real.On summing over f�g Eq. (50) gives, for qq pro
esses,[�("; 0) ��(#; 0)℄qq = nF+�+� (xa; k?a) 
os[�a + �00
 � �a � ~�a + �
 + ~�
 + �H� ℄� F+��+ (xa; k?a) 
os[�a � �00
 + �a + ~�a � �
 � ~�
 � �H� ℄o (53)� f̂q=B(xb; k?b) hM̂01M̂02 (xa; xb; z;k?a;k?b;k?�)iqq h�2iD�+�(z; k?�)iand, for qg pro
esses[�("; 0) ��(#; 0)℄qg = nF+�+� (xa; k?a) 
os[�a + �00
 � �a � ~�a + �
 + ~�
 + �H� ℄� F+��+ (xa; k?a) 
os[�a � �00
 + �a + ~�a � �
 � ~�
 � �H� ℄o (54)� f̂g=B(xb; k?b) hM̂01M̂02 (xa; xb; z;k?a;k?b;k?�)iqg h�2iD�+�(z; k?�)i :13



The produ
t of amplitudes appearing in Eqs. (53) and (54) are given by:M̂01 M̂02 = g4s 89 (� ŝû̂t2 + Æ�� 13 ŝ̂t) (q�q� ! q�q�)M̂01 M̂02 = g4s 89 Æ�
 (� ŝû̂t2 + Æ�� 13 û̂t ) (q��q� ! q
�qÆ) (55)M̂01 M̂02 = g4s 89 (94 ŝû̂t2 � 1) (qg ! qg)where �; �; 
 and Æ are 
avour indi
es. Noti
e that in the above expressions allthe dependen
es on the angles in the distribution and fragmentation fun
tions areexpli
it and the fun
tions F , f̂ and D do not depend on angles any more; theelementary amplitudes depend on angles via the Mandelstam variables ŝ; t̂ and û.Noti
e also that the qq and qg 
ontributions have exa
tly the same stru
ture, thedi�eren
e being only in the parton b distribution and in the elementary pro
esses.From Eqs. (21), (24), (53) and (54) the numerator of the single spin asymmetryAN , under the assumption that only Collins e�e
t 
ontributes, is given by (b,d 
anbe either quarks or gluons):E� d�p" p!� Xd3p� � E� d�p# p!� Xd3p� = (56)Xqa;b;q
;d Z dxa dxb dz16�2xaxbz2s d2k?a d2k?b d3k?� Æ(k?� � p̂
)� J(k?�) Æ(ŝ+ t̂+ û)� nF+�+� (xa; k?a) 
os[�a + �00
 � �a � ~�a + �
 + ~�
 + �H� ℄� F+��+ (xa; k?a) 
os[�a � �00
 + �a + ~�a � �
 � ~�
 � �H� ℄o� f̂b=B(xb; k?b) hM̂01M̂02 (xa; xb; z;k?a;k?b;k?�)iqab!q
d h�2iD�+�(z; k?�)i :A few 
omments are in order.� All angles appearing in Eq. (56) 
an be expressed in terms of the pp 
.m.integration variables, via Eqs. (33), (35){(42) and (45).� From Eqs. (48) and (49) one 
an see that D�+� is a purely imaginary quantity.The Collins fragmentation fun
tion [6, 15, 24, 27℄�2iD�+� = 2 ImD�+� � �ND�=q" ; (57)has a simple interpretation in the frame in whi
h the quark moves along theZ dire
tion, with spin parallel (q") or antiparallel (q#) to the Y -axis, whilethe q ! �X pro
ess o

urs in the XZ plane: it gives the di�eren
e betweenthe number density of pions resulting from the fragmentation of a quark q"14



and a quark q#. In the pp 
.m. frame the quark transverse spin dire
tion isnot, in general, orthogonal to the q ! �X plane and this re
e
ts into the �H�dependen
e appearing in Eq. (56).� The produ
t of elementary amplitudes M̂01M̂02 , see Eqs. (51) and (52), is, ina frame in whi
h the partoni
 
.m. s
attering plane is XZ, simply related tothe spin transfer 
ross se
tion:116�ŝ2 hM̂01M̂02 iqb = d�̂q" b!q" bdt̂ � d�̂q" b!q# bdt̂ � (58)Again, the parton intrinsi
 motions give, in general, more 
ompli
ated, nonplanar 
on�gurations for the elementary s
atterings, whi
h indu
e dependen
eson the angles �j, �0j , �0j and �00
 .� The distribution terms F+�+� (xa; k?a) and F+��+ (xa; k?a) are related to the dis-tribution of transversely polarised quarks inside a transversely polarised pro-ton; these transverse dire
tions 
an be di�erent for protons and quarks [25℄.Without any intrinsi
 motion, only the F+�+� (xa) distribution would be present,
oin
iding with the transversity distribution h1(xa) [24℄.� Note that if one takes into a

ount intrinsi
 motions only in the fragmentationpro
ess, assumed to o

ur in the XZ plane [k?a = k?b = 0, (k?�)y = 0, whi
himplies all phases to be zero℄, one re
overs the expression for the numeratorof AN (aside from the fa
tor J) used in Refs. [15, 16℄.We 
an now use Eqs. (56) and (4) to 
ompute the SSA AN = (d�"�d�#)=2 d�.3. Attempts to �t the data: suppression of the Collins me
hanismAs noted earlier, it was previously believed that the remarkably large SSA founde.g. in the E704 experiment [19℄ 
ould be generated by either the Sivers [14℄ orthe Collins me
hanisms [15, 16℄. However, to avoid handling the very 
omplexkinemati
s and having to deal numeri
ally with 8-dimensional integrals, only theone essential intrinsi
 k?, responsible for the asymmetry, was taken into a

ountin these studies. We now believe that the phases involved, when the kinemati
s istreated 
arefully, are 
ru
ial, and, as we shall see, lead to a large suppression of theasymmetry due to the Collins me
hanism. As explained in [4℄ there is little or nosuppression of the asymmetry due to the Sivers me
hanism.In order to demonstrate the extent of the suppression we shall 
hoose for theunmeasured soft fun
tions in Eq. (56) their known upper bounds. Let us �rst writethese fun
tions with the notations of Refs. [11℄ and [24℄ (details will be given in[25℄): F+�+� (x; k?) = h1(x; k?) = h1T (x; k?) + k2?2M2p h?1T (x; k?) (59)15



F+��+ (x; k?) = k2?2M2p h?1T (x; k?) (60)�2iD�+�(z; k?) = �ND�=q"(z; k?) = 2k?zM� H?q1 (z; k?) : (61)where Mp and M� are respe
tively the proton and pion mass. The following posi-tivity bounds hold [28, 29℄:jh1(x; k?)j � 12 [q(x; k?) + �q(x; k?)℄ = q+(x; k?) (62)k2?2M2p jh?1T (x; k?)j � 12 [q(x; k?)��q(x; k?)℄ = q�(x; k?) (63)j�ND�=q"(z; k?)j � 2D�=q(z; k?) : (64)In our numeri
al estimates we adopt for all the unmeasured soft fun
tions theabove maximum possible values, and, moreover, adjust their signs so that the 
on-tributions from the valen
e 
avours (up and down) reinfor
e ea
h other in the �+rea
tion, produ
ing a maximally large positive A�+N . By isospin invarian
e it thenturns out that this 
hoi
e also produ
es a maximally large negative A��N . To bepre
ise, we have 
omputed the SSA, AN = (d�" � d�#)=2 d�, via Eqs. (56) and (4),with the following 
hoi
es:� For the transversity pdf F+�+� (x; k?) = h1(x; k?) and its 
ompanion h?1T we haveonly 
onsidered up and down quark 
avours, without any sea 
ontribution. Wehave saturated Eqs. (62) and (63):hu1(x; k?) = u+(x; k?) hd1(x; k?) = �d+(x; k?) (65)k2?2M2p h?u1T (x; k?) = �u�(x; k?) k2?2M2p h?d1T (x; k?) = +d+(x; k?) : (66)One naturally expe
ts, for valen
e quarks, positive values for hu1 and negativeones for hd1; the relative signs between h1 and h?1T are 
hosen in order to max-imise the sum of their 
ontributions in Eq. (56). The x and k? dependen
es inthe unpolarised and polarised pdf are fa
torised assuming the same Gaussianform as in Eq. (6), with qhk2?i = 0.8 GeV/
 [4℄. For the x-dependen
e of theunpolarised pdf we have adopted the MRST01 set [30℄ and for the polarisedpdf either the LSS01 set [31℄ or the LSS-BBS set [32℄, as two examples of verydi�erent 
hoi
es. We have used the same QCD evolution s
ale as in Ref. [4℄.� We have 
hosen the z-dependen
e of the Collins fun
tion in su
h a way asto maximise the e�e
ts. Let us 
onsider the produ
tion of �+'s: sin
e thedominant partoni
 
ontribution at large xF is ug ! ug, for whi
h the produ
tof elementary amplitudes M̂01M̂02 is negative, see Eqs. (55), in order to get a16



positive AN we need a negative u-quark Collins fun
tion. That is, we satisfythe positivity bound (64) with:�ND�+=u"(z; k?) = �2D�+=u(z; k?) : (67)We 
onsider here also the 
ontribution of the sub-leading 
hannel dg ! dg(negle
ted in Refs. [15, 16℄); as it enters with a negative hd1, in order to addall 
ontributions, we use for the non-leading Collins fun
tion�ND�+=d"(z; k?) = +2D�+=d(z; k?) : (68)In this way also AN for ��'s is maximised in size (by isospin invarian
e).For �0's we take, exploiting isospin symmetry,�ND�0=q" = 12 ��ND�+=u" +�ND�+=d"� = 12 ��2D�+=u + 2D�+=d� ; (69)where q = u; �u; d; �d and whi
h still ful�lls the bound (64). The z and k? de-penden
es of the unpolarised fragmentation fun
tions are also fa
torised, withthe same Gaussian dependen
e as in Ref. [4℄, whi
h introdu
es a z-dependenthk2?i value, smaller than the 
onstant hk2?i value assumed for the pdf. Thisvalue allows a good understanding of the unpolarised 
ross se
tions; we haveexpli
itly 
he
ked that in
reasing the � hk2?i does not 
hange signi�
antly ourpresent results (while spoiling the agreement with the unpolarised 
ross se
-tions). The z-dependent unpolarised � are taken either from Kretzer [33℄ orfrom KKP [34, 4℄, as typi
al examples of two di�erent sets.With the above 
hoi
es, Eqs. (59){(69), we 
an (over)estimate the maximumvalue that, within our approa
h, the Collins me
hanism alone 
ontributes to theSSA in p" p ! �X pro
esses. The results are presented in the four plots of Fig. 1,whi
h show (AN)Collinsmax as a fun
tion of xF , at pT = 1:5 GeV/
 and ps ' 19:4GeV: this is the E704 kinemati
al region and a 
omparison with their data [19℄is shown. The only di�eren
e between the plots is given by di�erent 
hoi
es ofthe polarised distribution fun
tions and/or the unpolarised fragmentation fun
tions.Four di�erent 
ombinations are possible: two di�erent sets of polarised pdf, LSS01[31℄ or LSS-BBS [32℄, and two di�erent sets of unpolarised �, Kretzer [33℄, or KKP[34℄. The four 
ombinations exhaust all possible features of 
hoi
es available inthe literature. The results 
learly show that the Collins me
hanism alone, evenmaximising all its e�e
ts, 
annot explain the observed SSA values; its 
ontribution,when all proper phases are taken into a

ount, fails to explain the large E704 valuesobserved for A�+N and A��N at large xF . 17



4. Comments and 
on
lusionsWe have developed a 
onsistent formalism to des
ribe, within pQCD and a fa
-torisation s
heme, the in
lusive produ
tion of parti
les in hadroni
 high energy 
ol-lisions; all intrinsi
 motions of partons in hadrons and of hadrons in fragmentingpartons, are properly taken into a

ount. Su
h a s
heme has been applied, in aparallel paper [4℄, to the des
ription of several unpolarised 
ross se
tions and tothe 
omputation of SSA in p" p ! �X pro
esses, generated by the Sivers me
ha-nism alone. In this paper we have again 
onsidered SSA in p" p ! �X pro
esses,but fo
ussing on the 
ontribution of the Collins me
hanism alone. Previous work[14, 15, 16℄, performed in a similar s
heme with simpli�ed kinemati
s, showed thatboth the Collins and the Sivers me
hanisms, 
ould alone explain the observed dataon SSA.Su
h a 
on
lusion has now to be modi�ed: while properly 
hosen Sivers distri-bution fun
tions 
ould still explain the data [4℄, there are no Collins fragmentationfun
tions able to do that, as Fig. 1 shows. The failure of the Collins me
hanism,when all partoni
 motions are in
luded, 
an be understood from the 
ompli
atedazimuthal angle dependen
ies in Eq. (56): the many phases arising in polariseddistribution and fragmentation fun
tions, and in polarised non planar elementarydynami
s 
onspire, when integrated, to strongly suppress the �nal result.The situation with the Sivers 
ontribution alone is mu
h simpler, as the partonsparti
ipating in the elementary dynami
s and in the fragmentation pro
ess are notpolarised. As a 
onsequen
e, the phase stru
ture of the numerator of AN , in Sivers
ase, 
ontains only one phase, the Sivers angle (see Eqs. (44) and (45) of Ref. [4℄).Its integration, 
oupled with the dependen
e of the elementary dynami
s on thesame angle, does not signi�
antly suppress the result. In this 
ase, the simpli�edkinemati
s of Ref. [14℄ 
ontains the main physi
al features of the me
hanism andgives a reasonably a

urate 
omputation of AN .Our results show, on
e more, the importan
e and subtleties of spin e�e
ts; allphases have to be properly 
onsidered and they often play 
ru
ial and unexpe
tedroles. The analysis of this paper will be extended to other pro
esses, like semi-in
lusive Deep Inelasti
 S
attering, where many SSA e�e
ts have been observed[17, 18℄ and are being measured.A
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