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Abstract

We investigate the observables available in the angular distribution of B → K∗µ+µ− to identify

those suitable for measurements in the first few years of LHC data taking. As experimental

uncertainties will dominate, we focus on observables that are simple to measure, while maxim-

izing the potential for discovery. There are three observables that may be extracted by counting

signal events as a function of one or two decay angles and correspond to large features of the full

angular distribution in the Standard Model: AFB, FL, and S5. Two of these are well known in

the experimental community; however, we show that measuring S5 adds complementary sens-

itivity to physics beyond the Standard model. Like AFB, it features a zero–crossing point with

reduced hadronic uncertainties at leading order and in the large recoil limit. We explore the

experimental sensitivity to this point at LHCb and show that it may be measured with high

precision due to the steepness of the S5 distribution. Current experimental model independent

constraints on parameter space are presented and predictions made for the values of the AFB

and S5 zero–crossing points. The relative impact of LHCb measurements of AFB, FL, and S5,

with 2 fb−1 of integrated luminosity, is assessed. These issues are explored with a new model of

the decay that can be used with standard simulation tools such as EvtGen.
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1 Introduction

The decay Bd → K∗0µ+µ− is a golden channel for the study of flavour changing neutral currents

(FCNC) at the Large Hadron Collider (LHC). The four-body final state, as K∗0 → Kπ, means

that there is a wealth of information in the full-angular distribution that is complementary

to that available in the widely studied b → sγ decays. In the presence of physics beyond

the Standard Model (SM), new heavy degrees of freedom may enter the b → s loops. These

can alter the decay amplitudes, affecting the full-angular distribution observed. This makes

Bd → K∗0µ+µ− one of the most promising places in the flavour sector to search for new physics

(NP) at the LHC (see Ref. [1] for a review). We concentrate on the large-recoil regime, where

the energy of the K∗ is large such that QCD factorization is applicable. The low-recoil regime

was described in Ref. [2], however at present form factors in this regime are not well known.

A number of interesting measurements have already been made [3–9]. They are broadly in

agreement with SM predictions; however, experimental precision is currently too low for firm

conclusions to be drawn.

The properties of the full-angular distribution have been studied by many authors and a

number of potential measurements have been identified; e.g. Refs [10–16]. Particular emphasis

has been placed on finding angular observables with reduced theoretical uncertainties or en-

hanced sensitivity to particular classes of NP. However, in the first few years of LHC data

taking the dominant sources of uncertainty will be experimental; thus, the emphasis should be

on finding quantities that can be cleanly measured with relatively small uncertainties. Once

very large data sets have been collected, it will be possible to use a full-angular analysis to

extract the various underlying amplitudes directly [13, 17]. This will allow the determination

of many theoretically clean observables. However, performing this kind of analysis will not be

possible until detectors are very well understood and the number of collected signal events are

in the thousands. Prior to this, symmetries and asymmetries of the full-angular distribution

can be used to extract some observables individually from angular projections [14, 15, 18–20].

In this paper, we focus on observables that correspond to large features in the Bd →
K∗0µ+µ− full-angular distribution and can be measured by counting the number of signal events

as a function of one or two decay angles. We then investigate the relative experimental sensit-

ivities to these observables at LHCb [21] and their projected impact on the allowed parameter

space after measurements with 2 fb−1 of integrated luminosity. The rest of the paper is struc-

tured as follows: In the next section we give a brief overview of the theoretical framework

employed with details of the decay amplitude calculation; in Sec. 3, observables that will be rel-

evant for analyses with the first few years of LHC data are discussed, and details of benchmark

NP models provided. We also summarize the impact of existing experimental measurements on

constraining the NP contribution to the Wilson coefficients. In Sec. 5, we analyse the possibility

of detecting NP effects at LHCb using our chosen observables. In Sec. 6, the potential impact

of these measurements on parameter space is assessed. Finally, in Sec. 7, a short summary is

given.
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C1(µ) C2(µ) C3(µ) C4(µ) C5(µ) C6(µ)

-0.135 1.054 0.012 -0.033 0.009 -0.039

Ceff
7 (µ) Ceff

8 (µ) ∆Ceff
9 (µ) Ceff

10 (µ)

-0.306 -0.159 4.220 -4.093

Table 1: SM Wilson coefficients at µ = mb = 4.52 GeV/c2, where ∆Ceff
9 (µ) ∼ Ceff

9 (µ)− Y (q2).

2 Theoretical Details

2.1 Introduction

A decay model following Ref. [22] has become the standard tool for studies of Bd → K∗0µ+µ−

within the experimental community due to its inclusion in the decay simulator EvtGen [23]. A

significantly improved version of that model with much greater support for the simulation of NP

as well as a state-of-the-art SM treatment has been developed as part of the present work [24].

We present our theoretical framework in a way that allows direct comparison with Ref. [22],

by expressing the decay amplitude in terms of the auxiliary functions used in that reference.

Calculation of these requires Wilson coefficients, form factors and quantum-chromodynamics

factorization (QCDF) corrections, as described in detail in this section.

2.2 Wilson Coefficients

The Wilson coefficients, Ci(µ), are process-independent coupling constants for the basis of

effective vertices described by local operators, Oi(µ), and encode contributions at scales above

the renormalization scale, µ. For a given NP model, new diagrams will become relevant and the

Ci(µ)’s may change from their SM values; additional operators may also become important1.

The weak effective Hamiltonian, neglecting doubly Cabibbo-suppressed contributions, H(u)
eff , is

given by

Heff = −4GF√
2
λt

C1Oc1 + C2Oc2 +
6∑
i=3

CiOi +
∑
j

(CjOj + C ′jO′j)

 , (1)

where j = 7, 8, 9, 10, P, S, GF is the Fermi constant, and λt = VtbV
∗
ts is the relevant combination

of Cabibbo–Kobayashi–Maskawa (CKM) matrix elements. The operators O and O′ are defined

in Ref. [15], and a subset is given explicitly in App. A.

The primed operators have opposite chirality to the unprimed ones and their correspond-

ing coefficients, C ′i(µ), are suppressed by ms/mb or vanish in the SM; however, they may be

enhanced by NP. We neglect the contributions from O′i for 1 ≤ i ≤ 6 as they are either heavily

constrained by experimental results or generically small; NP contributions to O′7−10 may still

be important and are included. We also include the scalar and pseudoscalar operators O(′)
S,P .

These vanish in the SM but may arise in certain NP scenarios, for example in the case of an

additional Higgs doublet.

The Wilson coefficients are calculated by matching the full and effective theories at the scale

of the W boson mass, mW . For the SM Wilson coefficients, we aim at next-to-next-to-leading

1A comprehensive review of effective field theories in weak decays can be found in Ref. [25].
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logarithmic (NNLL) accuracy. This requires calculating the matching conditions at µ = mW to

two-loop accuracy. This has been done in Ref. [26]. NP contributions are included to one-loop

accuracy only, as two-loop corrections are expected to be small. This was shown explicitly for

the MSSM in Ref. [27]. The Wilson coefficients must then be evolved down to the scale µ ∼ mb.

The evolution has been implemented using the full 10×10 anomalous dimension matrix following

Refs [28–30]. The primed operators, O′7−10, are evolved as their unprimed equivalents; however,

the scalar and pseudoscalar operators O(′)
S/P are defined to be conserved currents and do not

mix with the other operators and so do not require evolution. For convenience, we define the

following combinations of Wilson coefficients:

Ceff
7 =

4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6;

Ceff
8 =

4π

αs
C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6;

Ceff
9 =

4π

αs
C9 + Y (q2);

Ceff
10 =

4π

αs
C10;

C ′ eff
7,8,9,10 =

4π

αs
C ′7,8,9,10 ; (2)

where q2 is the invariant mass squared on the muon pair and Y (q2) is defined in Ref. [31]. Tab. 1

gives the values of the Wilson coefficients at µ = mb,PS(2GeV) in the SM. The treatment of

quark masses in the PS scheme is discussed in Sec. 2.6.

2.3 Form Factors

Bd → K∗0µ+µ− is characterized by eight form factors, V (q2), A0−3(q2) and T1−3(q2). These

are hadronic quantities that, for certain ranges in q2, may be obtained by non-perturbative

methods. Their definition in terms of hadronic matrix elements can be found, for example, in

Ref. [32]. Lattice field theory currently offers a prediction for the form factor T1(0) relevant to

B → K∗γ [33], but not for the others. However, QCD sum rules on the light cone (LCSR) is a

well established alternative technique that provides results for the desired range in q2 [15, 32]. It

is an extension of classic QCD sum rules [34], in which matrix elements are evaluated via both

operator product expansion and dispersive representation. Quark-hadron duality then leads

to sum rules for the desired hadronic quantities. LCSR follows a similar procedure to obtain

sum rules for the form factors, but the operator product expansion in terms of vacuum conden-

states is replaced by a light-cone expansion in terms of universal light-cone meson distribution

amplitudes. A comprehensive review of QCD sum rules and LSCR can be found in Ref. [35].

We use the full set of LCSR form factors in our model [32, 36], where the sum rules for all

form factors except for A0 were calculated at O(αs) accuracy for twist-2 and-3 and tree-level

accuracy for twist-4 contributions. Note that the normalization of the form factors we use differs

slightly from Ref. [15], however this will not have much impact on the observables, as they are

normalized by the total decay rate, so the effect will cancel out. We estimate the uncertainties

using the values provided in Ref. [32] for q2 = 0, as shown in Tab. 2. Note that A3(0) and
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F (0) ∆tot ∆a1

V 0.411 0.033 0.44 δa1
A0 0.374 0.034 0.39 δa1
A1 0.292 0.028 0.33 δa1
A2 0.259 0.027 0.31 δa1
T1 0.333 0.028 0.34 δa1
T3 0.202 0.018 0.18 δa1

Table 2: Form factors for Bd → K∗0µ+µ− from LCSR at q2 = 0 [32], as described in Sec. 2.3.
Here ∆tot is the total error arising from the uncertainty on all input parameters with the
exception of the Gegenbauer moment a1. ∆a1 contains the uncertainty due to a1, where δa1 is
defined δa1 = a1(K∗, 1GeV)− 0.1.

T2(0) are not included in the table, as they can be found using the relations A3(0) = A0(0) and

T2(0) = T1(0).

In the large energy limit of the K∗, the form factors satisfy certain relations and, therefore,

can be reduced to two heavy-to-light or soft form factors, denoted ξ⊥ and ξ‖ [37–40]. These

reduced form factors are generally used within the QCDF framework [31, 41]. The relations

are studied through appropriate ratios of the LCSR predictions for the full form factors in

Appendix B of Ref. [15]. It is shown that those involving ξ⊥ are almost independent of q2, but

those involving ξ‖ have a definite dependence on q2, so are probably more sensitive to the 1/mb

corrections neglected in QCDF.

2.4 QCD Factorization Corrections

QCD factorization is a framework in which the O(αs) corrections to Bd → K∗0µ+µ− can be

calculated in the combined heavy-quark and large-recoil energy limit; this applies when the

energy of the K∗ is large. These corrections take into account contributions that cannot be

included in the form factors, such as the non-factorizable scattering effects arising from hard

gluon exchange between the constituents of the B meson.

Our calculation of the decay amplitude includes QCDF corrections at next-to-leading order

(NLO) in αs but leading order (LO) in 1/mb. These corrections are included in the definitions

of T‖(q2) and T⊥(q2) found in Ref. [31] and are given in terms of ξ⊥ and ξ‖; however, O(αs)

factorizable corrections that arise from expressing the full form factors in terms of ξ⊥ and ξ‖
must then be subsumed. Following Ref. [15], we instead express our LO results for the decay

amplitude in terms of the full form factors. Factorizable corrections are then redundant and

the main source of O(1/mb) corrections is automatically included. In addition, we neglect weak

annihilation corrections at LO in 1/mb and O(αs) as they are dependent on the numerically

small Wilson coefficients C3 and C4.

We denote T NLO
‖ (q2) and T NLO

⊥ (q2) to be the analogues of T‖(q2) and T⊥(q2) from Ref. [31]

with the only relevant O(αs) contributions included. We also define T ′NLO
‖ (q2) and T ′NLO

⊥ (q2);

the primes indicate that the unprimed Wilson coefficients should be replaced by their primed

equivalents. In order to extend the results of Ref. [22] to include NLO corrections, we must
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make the following replacements:

C
(′) eff
7 T1(q2) → C

(′) eff
7 T1(q2) + T (′) NLO

⊥ (q2);

C
(′) eff
7 T2(q2) → C

(′) eff
7 T2(q2) + 2

EK∗(q
2)

mB
T (′) NLO
⊥ (q2);

C
(′) eff
7 T3(q2) → C

(′) eff
7 T3(q2) + T (′) NLO

⊥ (q2) + T (′) NLO
‖ (q2); (3)

where EK∗(q
2) is the energy of the K∗ and mB is the mass of the B meson.

We have now introduced the Wilson coefficients, form factors and defined the QCD factor-

ization corrections. These are all ingredients for the auxiliary functions describing the decay

amplitude, as seen in the following subsection.

2.5 Decay Amplitude

The Hamiltonian defined in Eq. (1), combined with the standard definitions of the form factors,

leads to the following decay amplitude [22, 42]:

M∝
[
T 1
µ (µ̄ γµ µ) + T 2

µ (µ̄ γµγ5 µ) + S(µ̄ µ)
]

(4)

where

T 1
µ = A(q2)εµραβε

∗ρ p̂αB p̂
β
K∗ − iB(q2) ε∗µ + iC(q2)(ε∗ · p̂B) p̂µ + iD(q2)(ε∗ · p̂B) q̂µ (5)

T 2
µ = E(q2)εµραβ ε

∗ρp̂αB p̂
β
K∗ − iF (q2) ε∗µ + iG(q2)(ε∗ · p̂B) p̂µ + iH(q2)(ε∗ · p̂B) q̂µ (6)

and

S = i2m̂K∗(ε
∗ · p̂B) I(q2). (7)

Here, pB,K∗ and mB,K∗ are the four-momenta and masses of the respective particles in the

B meson rest frame, p ≡ pB + pK∗ , q ≡ pB − pK∗ , and ε∗µ is the K∗ polarization vector. The

circumflex denotes division by mB (e.g. m̂K∗ ≡ mK∗/mB). The auxiliary functions A-I(q2)

follow Ref. [22]; however, we have updated the previous expressions to include additional primed,

scalar, and pseudoscalar operators, as well as QCDF correction via T (′)NLO
‖ (q2) and T (′)NLO

⊥ (q2)

as outlined in Sec. 2.4. They are defined as:

A(q2) =
2

1 + m̂K∗
(Ceff

9 + C ′ eff
9 )V (q2) +

4m̂b

q̂2

(
(Ceff

7 + C ′ eff
7 )T1(q2)

+ T NLO
⊥ (q2) + T ′NLO

⊥ (q2)

)
; (8a)

B(q2) =(1 + m̂K∗)

{
(Ceff

9 − C ′ eff
9 )A1(q2) +

2m̂b

q̂2
(1− m̂K∗)

(
(Ceff

7 − C ′ eff
7 )T2(q2)

+ 2ÊK∗(q
2)(T NLO

⊥ (q2)− T ′NLO
⊥ (q2))

)}
; (8b)
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Parameter Value Ref.

ms 0.104 [43]
mc,PS(0.7 GeV) 1.5 GeV [44]
mb,PS(2 GeV) 4.52 GeV [45]

m̂t(m̂t) 162.3 GeV [46]

Table 3: Quark masses

C(q2) =
1

1− m̂2
K∗

{
(1− m̂K∗)(C

eff
9 − C ′ eff

9 )A2(q2)

+ 2m̂b

(
(Ceff

7 − C ′ eff
7 )(T3(q2) +

1− m̂2
K∗

q̂2
T2(q2))

+ (1 +
(1− m̂2

K∗) 2ÊK∗(q
2)

q̂2
)(T NLO
⊥ (q2)− T ′NLO

⊥ (q2))

+ T NLO
‖ (q2)− T ′NLO

‖ (q2)

)}
; (8c)

E(q2) =
2

(1 + m̂K∗)
(Ceff

10 + C ′ eff
10 )V (q2); (8d)

F (q2) =(1 + m̂K∗)(C
eff
10 − C ′ eff

10 )A1(q2); (8e)

G(q2) =(Ceff
10 − C ′ eff

10 )
A2(q2)

(1 + m̂K∗)
; (8f)

H(q2) =
1

q̂2
(Ceff

10 − C ′ eff
10 )

(
(1 + m̂K∗)A1(q2)− (1− m̂K∗)A2(q2)

− 2m̂K∗A0(q2)

)
− m̂K∗mB

2m̂µ
A0(q2)(CP − C ′P ); (8g)

I(q2) =−A0(q2)(CS − C ′S). (8h)

The recoil energy of the K∗ is given by

EK∗(q
2) =

m2
B +m2

K∗ − q2

2mB
. (9)

Using the equations of motion for the muons,

qµ(µ̄γµ µ) = 0 and qµ(µ̄γµγ5 µ) = −2mµµ̄γ5 µ, (10)

where mµ is the muon mass, we see that D(q2) vanishes and H(q2) is suppressed by a power of

mµ. However, H(q2) receives a pseudoscalar contribution inversely proportional to mµ allowing

for some sensitivity to CP −C ′P [42]. The observables described in Sec. 3.1 (e.g. Eqs (16)–(17))

may be calculated directly from the amplitudes given in Eq. (8); the necessary formulae are

presented in App. B and implemented in our model.
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Parameter Value Ref. Parameter Value Ref.

fB 200± 25 MeV [48] a⊥1,K∗(2 GeV) 0.03± 0.03 [49]

λB(2.2 GeV) 0.51± 0.12 GeV [50] a
‖
1,K∗(2 GeV) 0.02± 0.02 [49]

f⊥K∗(2 GeV) 163± 8 MeV [49] a⊥2,K∗(2 GeV) 0.08± 0.06 [49]

f
‖
K∗ 220± 5 MeV [49] a

‖
2,K∗ (2 GeV) 0.08± 0.06 [49]

Table 4: Hadronic parameters

2.6 Numerical Input

2.6.1 Quark Masses

The calculation of the auxiliary functions requires the bottom quark pole mass, which is known

to contain large long-distance corrections. To avoid this, a renormalization scheme, known as

the potential subtraction scheme (PS), was introduced in Ref. [47]. The quark mass defined in

the PS scheme has the advantage that the large infrared contributions are absent, while being

numerically close to the pole mass. It is suitable for calculations in which the quark is nearly

on-shell. Following Ref. [31], we replace the pole mass by the PS mass, mPS(µf ), using

m = mPS(µf ) +
4αs
3π

µf +O(α2
s) (11)

and neglect any resulting terms ofO(α2
s). Here µf is the scale at which the PS mass is calculated.

All occurrences of the symbol mb in our formulae refer to the PS mass, mb,PS(2 GeV), as shown

in Tab. 3.

The operator O7 is defined in terms of the modified minimal subtraction (MS) mass. In the

MS scheme, the 1/ε poles are simply removed, along with the associated terms in γ and 4π.

Therefore, when the b quark mass arises in combination with Ceff
7 , we replace the MS mass, m̄,

by the pole mass, using

m̄(µ) = m

(
1 +

αs
3π

(
3 ln

m2
b

µ2
− 4

)
+O(α2

s)

)
. (12)

This leads to factorizable O(αs) corrections to T NLO
⊥/‖ (q2) and T ′NLO

⊥/‖ (q2) as found in Ref. [31].

For consistency, we calculate the charm quark pole mass using Eq. (11). Here the PS mass

is taken from the most recent calculation as in Tab. 3. The resulting pole mass agrees with

results in Ref. [43], where it is calculated from the MS mass. The top quark mass enters the

calculation of the Wilson coefficients, and for this we use the MS mass in Tab. 3, as in Ref. [15].

2.6.2 Hadronic Parameters

In addition to the form factors described in Sec. 2.3, the QCDF corrections require light-cone

distribution amplitudes and decay constants. The light-cone distribution amplitude for both

the B and K∗ mesons enter the hard scattering corrections. For the B meson we follow the

prescription in Ref. [31] using the values for ΛB given in Tab. 4. For the K∗ meson we use the

8



Parameter Value Parameter Value

mB 5.28 GeV Vus 0.226± 0.002
mK∗ 0.896 GeV Vub (3.93± 0.36)10−3

mµ 0.106 GeV γ (77+30
−32)◦

MW 80.4 GeV GF (1.166)10−5 GeV−2

Table 5: CKM matrix parameters, additional masses and constants from Ref. [43].

standard Gegenabauer expansion,

Φm
K∗ = 6u(1− u)(1 + am1,K∗C

(3/2)
1 (2u− 1) + am2,K∗C

(3/2)
2 (2u− 1)), (13)

for m =⊥, ‖, taking the coefficients from Tab. 4. We also require the decay constants for both

the B and K∗ mesons. Additional parameters are summarized in Tab. 5.

3 Observables and New physics

Having established the basic theoretical framework, we proceed to discuss experimental observ-

ables for Bd → K∗0µ+µ−.

3.1 Observables

The full-angular decay distribution can be written as:

d4Γ

dq2 d cos θl d cos θK∗ dφ
=

9

32π
I(q2, θl, θK∗ , φ), (14)

where the angles θK∗ , θl and φ are defined as follows: θK∗ is the angle between the K− and B̄

in the rest frame of the K∗, and is defined in the range −1 ≤ cos θK∗ ≤ 1; θl is defined as the

angle between the µ− and B̄ in the di-muon centre of mass frame, and is defined in the range

−1 ≤ cos θl ≤ 1; φ is the angle between the normal to the K-π plane and the normal to the

di-muon plane, and is defined in the range 0 ≤ φ ≤ 2π. For the conjugate decay, the angles are

defined analogously, but with reference to the K+ and µ+. We can then express I(q2, θl, θK∗ , φ)

in terms of these angles as follows:

I(q2, θl, θK∗ , φ) = Is1 sin2 θK∗ + Ic1 cos2 θK∗ + (Is2 sin2 θK∗ + Ic2 cos2 θK∗) cos 2θl

+ I3 sin2 θK∗ sin2 θl cos 2φ+ I4 sin 2θK∗ sin 2θl cosφ

+ I5 sin 2θK∗ sin θl cosφ

+ (Is6 sin2 θK∗ + Ic6 cos2 θK∗) cos θl + I7 sin 2θK∗ sin θl sinφ

+ I8 sin 2θK∗ sin 2θl sinφ+ I9 sin2 θK∗ sin2 θl sin 2φ. (15)

The angular coefficients I
(a)
i , where i = 1 to 9 and a = s or c, describe the decay distribution.

A natural set of observables was identified in Ref. [15] by taking combinations of these I
(a)
i ’s

9



that emphasize CP -conserving and CP -violating effects. These were defined as

S
(s/c)
i = (I

(s/c)
i + Ī

(s/c)
i )

/
d(Γ + Γ̄)

dq2
, (16)

A
(s/c)
i = (I

(s/c)
i − Ī(s/c)

i )

/
d(Γ + Γ̄)

dq2
, (17)

where the A
(s/c)
i ’s have also been studied in Ref. [14]. We introduce the rate average, which,

for a variable V (q2), is given by

〈V 〉1-6 GeV2 =

∫ 6 GeV2

1 GeV2
dq2

(
V (q2)

d(Γ + Γ̄)

dq2

)/∫ 6 GeV2

1 GeV2
dq2 d(Γ + Γ̄)

dq2
. (18)

Using Eq. (16), it is possible to reconstruct standard observables such as the forward-backward

asymmetry, AFB, and the longtitudinal polarization fraction, FL:

AFB =
3

8
(2Ss6 + Sc6) and FL = −Sc

2. (19)

As explained in Sec. 1, our focus is on those observables that will be measurable at LHCb

without a full-angular analysis. In order to keep the experimental complexity to a minimum,

these observables should require information on only one or two of the angles. AFB, which

depends only on θl, and FL, which depends only on θK∗ , are well known examples. They can

be expressed as:

AFB =
4

3

(∫ 1

0
−
∫ 0

−1

)
dθl

d2(Γ + Γ̄)

dq2 dθl

/
d(Γ + Γ̄)

dq2
; (20)

FL =
1

9

(
16

∫ 1/2

−1/2

d(Γ + Γ̄)

dq2 d cos θK∗

/
d(Γ + Γ̄)

dq2
− 11

)
, (21)

where the latter expression makes use of the massless lepton approximation. We also study the

possibility of an early measurement of S5, which can be measured using only cos θK∗ and φ. It

is possible to express this as

S5 =
4

3

(∫ π/2

0
+

∫ 2π

3π/2
−
∫ 3π/2

π/2

)
dφ

(∫ 1

0
−
∫ 0

−1

)
d cos θK∗

d3(Γ− Γ̄)

dq2 d cos θK∗ dφ

/
d(Γ + Γ̄)

dq2
. (22)

A comprehensive study of the effects of the Wilson coefficients on the above observables, and

vice-versa, can be found in Ref. [15]. We note that S3, A7, and A9 can also be extracted

by the counting of signal events over one or two angles. S3 is related to the well known and

theoretically clean observable A
(2)
T [12]; to be precise, S3 equals 1

2(1 − FL)A
(2)
T in the massless

lepton limit. While significant enhancement of A
(2)
T is possible in the presence of non-SM C ′ eff

7

[51], the 1
2(1 − FL) prefactor implies that the enhancement is less pronounced in S3 [20]. The

smallness of S3 means that the experimental sensitivity to 〈S3〉1-6 GeV2 will be limited in the

first few years of LHCb data taking; thus, the study of S3 is thus left for other works [13].
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Enhancements to A7 and A9 in the presence of NP phases can, however, be sizable [14] and

could, in principle, lead to reasonable experimental resolutions, particularly for 〈A9〉1-6 GeV2 .

However, these measurements will still be experimentally challenging in the first few years. For

these reasons we choose to focus on AFB, FL and S5 for early study at LHCb.

As stated earlier, NP enters the calculations through contributions to the Wilson coefficients;

constraints on these contributions are described in the Sec. 4. It is well known that for certain

values of q2, the observables AFB and S5 vanish. We refer to these values of q2 as the zero-

crossing points, q2
0(AFB) and q2

0(S5). They are particularly sensitive to NP, and can be used

to further constrain the values of the Wilson Coefficients. At leading order, in the large recoil

limit, and for real values of the Wilson coefficients, it is possible to obtain simple expressions

for q2
0(AFB) [11, 31] and q2

0(S5):

q2
0(AFB) = −2mBmb

Ceff
7

Ceff
9

; q2
0(S5) =

−mBmb(C
eff
7 + C ′ eff

7 )

Ceff
9 + m̂b(C

eff
7 + C ′ eff

7 )
. (23)

In deriving these results we make use of the soft form factors, following Refs [31, 41]. The two

observables provide complementary sensitivity to NP through their differing dependence on the

Wilson coefficients, and allow for sensitivity to both chiralities of O7. The cancellation of the

soft form factors and the relative smallness of O(αs) corrections mean that both zero–crossing

points meet the criteria for theoretical cleanliness given in, e.g., Ref. [13]. In addition, we define

the gradient of AFB and S5 at their zero-crossing points,

G0(O) =
dO
dq2

∣∣∣∣
q20(O)

, (24)

where O is the observable AFB or S5 respectively. AFB has also been studied in the context of

B → Kπl+l− [52], where expressions for q2
0(AFB) and G0(AFB) were determined for the case of

an energetic kaon and soft pion. However, the kinematic region where the Kπ pair is energetic

is dominated by the K∗, and non-resonant effects can be neglected.

3.2 Overview of Specific Models and Effects on Wilson Coefficients

The observables for Bd → K∗0µ+µ− are most sensitive to the Wilson coefficients Ceff
7 , Ceff

9 ,

Ceff
10 and their primed equivalents, so we concentrate on the NP contributions to these in this

section. We also consider C
(′)
S and C

(′)
P for completeness; however, experimental sensitivity to

their effects are expected to be limited in this decay.

• Flavour Blind MSSM (FBMSSM): Here the MFV version of the Minimal Supersym-

metric Standard Model (MSSM) is modified by some flavour-conserving but CP -violating

phases in the soft supersymmetry (SUSY) breaking trilinear couplings [53]. The Wilson

coefficients we use correspond to those calculated in scenario FBMSSM II defined in Table

11 of Ref. [15]. The additional CP -violation contributes substantial complex phases to Ceff
7 ,

however there is no flavour structure beyond the SM, so primed operators are suppressed

as in the SM. As in all SUSY models, scalar and pseudoscalar operators arise due to the

additional Higgs doublet.

11
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Figure 1: Theoretical predictions for AFB, FL and S5. The red (continuous) line is the SM, the
blue (dashed) line is the GMSSM, and the purple (dotted) line is the FBMSSM.

• General MSSM (GMSSM): Minimal flavour violation is not imposed, and generic flavour-

and CP -violating soft SUSY-breaking terms are allowed [54]. The Wilson coefficients we

use are close to the scenario GMSSM IV in Ref. [15], corresponding to large NP contri-

butions to both Ceff
7 and C ′ eff

7 allowed by existing experimental bounds (see Sec. 4).

The Wilson coefficients in the above scenarios are given explicitly in Tab. 6. The central

values for the distributions of AFB, FL, and S5 are shown in Fig. 1 for the SM, the GMSSM, and

FBMSSM, along with estimates of the theoretical uncertainties. The agreement with previous

results is good. The predominant sources of the uncertainties are the form factors, hadronic

parameters, and quark masses, which are determined as discussed in Sec. 2. We also include the

uncertainty arising from varying the factorization scale, µ, in the range µ ∈ [µ/2, 2µ]. The three

distributions all show significant variation for the models considered here, as do the position or

absence of the zero-crossing points in AFB and S5 in the range q2 ∈ [1, 6] GeV2.

4 Constraints

Experimental results can be used to constrain the NP contributions, denoted CNP
i , to the Wilson

coefficients: we define Ci = CSM
i + CNP

i . We can then determine possible model-independent

effects of NP on Bd → K∗0µ+µ−. The most important constraints on the Wilson coefficients

are from the following measurements:

• Branching Ratio for Bs → µ+µ−: This is used to constrain the possible NP contribution

12



Model

SM FBMSSM GMSSM

Ceff
7 (µ) -0.306 0.031+0.475i -0.186+0.002i

C ′ eff
7 (µ) -0.007 0.008+0.003i 0.155+0.160i

Ceff
8 (µ) -0.159 -0.085+0.149i -0.062+0.004i

Ceff
8 (µ) -0.004 -0.000+0.001i 0.330+0.336i

∆Ceff
9 (µ) 4.220 4.257+0.000i 4.231+0.000i

C ′ eff
9 (µ) 0.000 0.002+0.000i 0.018+0.000i

Ceff
10 (µ) -4.093 -4.063+0.000i -4.241+0.000i

C ′ eff
10 (µ) 0.000 0.004+0.000i 0.003+0.003i

ĈS(µ)/GeV−1 0.000 -0.044-0.056i 0.000+0.001i

ĈP (µ)/GeV−1 0.000 0.043+0.054i 0.001+0.001i

Table 6: NP Wilson coefficients at µ = mb,PS(2 GeV/c2) = 4.52 GeV/c2 in the FBMSSM and

GMSSM as described in Sec. 3.2, where ĈX(µ) = (CX − C ′X)(µ) for X = S or P .

to the scalar and pseudoscalar operators. To calculate the branching ratio we use the

standard result from Ref. [15]

B(Bs → µ+µ−) = τBsf
2
Bs
mBs

α2
EMG

2
F

16π3
|VtbV ∗ts|2

√
1−

4m2
µ

m2
Bs

(|S|2
(

1−
4m2

µ

m2
Bs

)
+ |P |2), (25)

with the definitions

S =
m2
Bs

2
(CS − C ′S); P =

m2
Bs

2
(CP − C ′P ) +mµ(Ceff

10 − C ′ eff
10 ). (26)

We use fBs = 0.259 ± 0.032 GeV [55], τBs = 1.456 ± 0.03ps [56] and mBs = 5.37 GeV

[43], and other numerical parameters as in Ref. [15]. In agreement with existing results,

we find the SM prediction, BR(Bs → µ+µ−) = (3.70± 0.31) · 10−9, to be well below the

current experimental upper bound 3.6 · 10−8 [57].

• Branching Ratio for B → Xsl
+l−: We compare NP predictions for B(B → Xsl

+l−)1-6 GeV2

to the mean experimental value (1.60±0.51) ·10−6, as adopted in Ref. [14], combining the

results of BABAR, (1.8±0.7±0.5) ·10−6 [58], and Belle, (1.49+0.41
−0.32±0.50) ·10−6 [59]. This

helps to constrain the NP contribution to C
(′) eff
7,9,10 as well as C

(′)
S,P . As an inclusive mode,

the calculation for the region q2 ∈ [1, 6] GeV2 of the branching ratio is theoretically clean.

We use the expression for the differential decay distribution in Ref. [60], but also include

the NLO corrections computed in Ref. [61], and the contribution of the primed operators

as in Ref. [62]. Using our parameters we find B(B → Xsl
+l−) = (1.96 ± 0.11) · 10−6 for

the SM.

• Branching Ratio for B → Xsγ: The current experimental average for Eγ > 1.6 GeV is

B(B → Xsγ) = (3.52 ± 0.23 ± 0.09) · 10−4, as calculated by the Heavy Flavor Averaging
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Observable Wilson Coefficients

AFB Ceff
7 , Ceff

9

FL Ceff
7 , C ′ eff

7 ,Ceff
8 ,C ′ eff

9 , Ceff
10 , C ′ eff

10

S5 Ceff
7 , C ′ eff

7 , Ceff
9 , C ′ eff

10

Table 7: Relevant observables and the Wilson coefficients they most strongly depend on [15].

Group [56]. We use the recent theoretical SM result of Ref. [63], (3.28 ± 0.25) · 10−4 for

Eγ > 1.6 GeV, and include NP effects as in Ref. [51]. The SM calculation makes use of

the kinetic renormalization scheme for determining mc and mb; an alternative calculation

using the 1S scheme leads to a branching ratio of (3.15 ± 0.23) · 10−4 [64, 65]; however,

our results are not sensitive to the difference between these two values.

• Time dependent CP Asymmetry S(B → K∗γ): This constraint is sensitive to the

photon polarization, and, hence, to C ′ eff
7 . This should be compared to S(B → K∗γ) =

(−1.6 ± 2.2) · 10−1 from experiment [56]. Our SM result S(B → K∗γ) = (−0.26 ±
0.05) · 10−1 agrees with that of Ref. [14] within uncertainties. In Refs [66, 67], the soft

gluon contribution was calculated, leading to a small correction to the predicted value.

This is neglected in our treatment as it has little effect on the constraining power of the

experimental measurement.

• Integrated Forward-Backward Asymmetry 〈AFB〉1-6GeV2 for Bd → K∗0µ+µ− :

We use the existing Bd → K∗0µ+µ− measurements as constraints. Recently Belle has

made a measurement of the forward-backward asymmetry, and finds the integrated AFB

value in the region 1-6 GeV2 to be −0.26 ± 0.29 [8]. This is to be compared to our SM

prediction of 0.04 ± 0.03, which is in agreement with the recent result in Ref. [68]. This

observable constrains the Wilson coefficients as seen in Tab. 7. We look forward to a

1-6 GeV2 measurement from CDF with great interest [9].

• Integrated Longitudinal Polarization Fraction 〈FL〉1-6GeV2 for Bd → K∗0µ+µ− :

Belle has also recently measured the Longitudinal Polarization Fraction to be 0.67±0.24

[8]. This should be compared to our SM prediction 0.76 ± 0.08, also in agreement with

Ref. [68]. Again this constraint affects Wilson coefficients as seen in Tab. 7.

In order to assess the impact of these constraints on the NP contributions to the underlying

Wilson coefficients in as general a way as possible, we have performed a semi-random walk

through parameter space. We allow (CS −C ′S), (CP −C ′P ) and the NP components of C
(′) eff
7−10 to

vary simultaneously, both in magnitude and phase. To our knowledge this has not been done in

previous studies. At each randomly chosen point in parameter space, predictions are made for

the six observables listed above. The point is then either accepted or rejected using a modified

χ2 metric that treats experimental uncertainties as being normally distributed, but theoretical

uncertainties as having uniform probability within the specified range. Following traditional

minimization techniques, the random walk is guided by this modified χ2 so that regions with

lower values may be identified. Using this method, a sample of 2.5 · 105 independent sets of
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Observable Experiment SM Theory

B(Bs → µ+µ−) 3.6 · 10−8 [57] (3.70± 0.31) · 10−9

B(B → Xsl
+l−)1-6 GeV2 (1.60± 0.51) · 10−6 [14] (1.97± 0.11) · 10−6

B(B → Xsγ) (3.52± 0.23± 0.09) · 10−4 [56] (3.28± 0.25) · 10−4

S(B → K∗γ) (−1.6± 2.2) · 10−1 [56] (−0.26± 0.05) · 10−1

〈AFB〉1-6 GeV2 −0.26± 0.29 [8] 0.04± 0.03

〈FL〉1-6 GeV2 0.67± 0.24 [8] 0.76± 0.08

Table 8: Experimental measurements used as constraints, along with theoretical predictions in
the SM.

Wilson coefficients was produced. Each set results in predictions for the observables listed above

with better than 2σ agreement with current measurements. It was found that the agreement

between existing measurements and the SM is excellent, with a χ2 per degree of freedom of 0.35.

While this is not implausible for six degrees of freedom, the level of agreement suggests that

more detailed study of the theoretical uncertainties will be required as experimental resolutions

improve.

Fig. 2 shows the range of values found for the phase and magnitude of the NP contribution to

Ceff
7 and C ′ eff

7 (at the scale µ = mW ) during the parameter space exploration. The colour index

shows the mean value of the probability that a point is compatible with current experimental

results. Areas with probability greater than 1σ are shaded red, while those with less than 1σ

are shaded blue. The outline of the 1σ contour can clearly be seen. The values of the Wilson

coefficients for the SM, FBMSSM, and GMSSM are also shown.

Fig. 2 can be compared to Fig. 2 from Ref. [14], in which Ceff
7 and C ′ eff

7 are assumed to be

real and all other Wilson coefficients SM-like. The effects of weakening these assumptions can

be seen. Similar figures are shown for the other Wilson coefficients in Figs 3 and 4. The allowed

regions of parameter space are still large, particularly if NP phases are allowed. In contrast to

Ref. [14], constraints from AFB measurements at high–q2 (low recoil) are not included as we

feel that NLO effects are not under control in this region. The effect of this constraint may be

seen by comparing our Ceff
10 figure, shown in Fig. 4, with that in Fig. 2 of Ref. [14].

The ensemble of constrained NP models can also be used to explore the likely values of the

AFB and S5 zero-crossing points in the range q2 ∈ [0.5, 15] GeV2. While it should be noted that

theoretical uncertainties are not well controlled over this q2 range, the majority of points within

the 1σ contour lie within the theoretically clean region, q2 ∈ [1, 6] GeV2 (see Fig. 5a). It was

found that 8% of the parameter space points considered had no AFB zero-crossing in the range

q2 ∈ [0.5, 15] GeV2. For S5, only 2% of points had no zero-crossing in the same range. Fig. 5b

shows the AFB and S5 gradients at their zero-crossing points. We find that, for the majority of

points, G0(S5) is greater than G0(AFB). This will have an impact for the q2
0(S5) experimental

analysis discussed in the Sec. 5.4.2.

To summarize, in this section we have considered six existing experimental constraints, and

used these to determine the allowed regions in parameter space for the NP contribution to

the Wilson coefficients. These allowed values for the Wilson coefficients were then used to
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Figure 2: [Colour online] Allowed parameter space for the NP contribution to Ceff
7 and C ′ eff

7

at the scale µ = mW , as described in Sec. 4. Points with a compatibility with data of 68% or
better are drawn with a dark (red) colour palette, while those with less than this are drawn
with a light (blue) palette. The SM point is shown in black at the origin, while the FBMSSM
is a green square and the GMSSM is a blue triangle. The Wilson coefficients for these models
are shown in Tab. 6.

find corresponding predictions for q2
0(S5), q2

0(AFB), G0(S5), and G0(AFB). In the following

sections, we investigate the experimental sensitivity to the observables AFB, S5, and FL, and

how measurements of these could have an impact on the allowed NP contributions to the Wilson

coefficients.

5 Experimental Sensitivities

Three observables that can be measured as a function of q2 by counting signal events in specific

angular bins, using Eqs (20)–(22), were highlighted in Sec. 3.1: AFB, FL, and S5. These

observables should be suitable for early measurement at LHCb. In the following, we estimate

the experimental sensitivities in order to make a fair comparison between these observables.

LHCb is expected to collect ∼ 6.2 · 103 signal events per 2 fb−1 of integrated luminosity

with a signal to background ratio of approximately four [69, 70]. With relatively small data

sets it should be possible to extract the values of these observables integrated over q2. These

measurements provide an early opportunity to discover NP in b → s transitions. For larger

data sets it will be possible to map out the dependence on q2 as well, allowing for additional NP

discrimination. Studies of these two approaches can be found in Refs [18, 19] for the observable

AFB.

To assess the impact of each potential measurement on the allowed NP parameter space,

simple analyses have been developed to extract the q2 integrated values of AFB, FL, and S5

in the region q2 ∈ [1, 6] GeV2. In addition, analyses have been constructed to extract the

q2 dependence of AFB and S5, along with their zero-crossing points; the latter can be found

numerically from the AFB(q2) and S5(q2) distributions. In order to minimize the experimental
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Figure 3: [Colour online] Allowed parameter space for the Wilson coefficients C
(′) eff
8−9 after ap-

plying relevant b→ s experimental constraints. The colour coding is the same as in Fig. 2.
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Figure 4: [Colour online] Allowed parameter space for the Wilson coefficients C
(′) eff
10 and (CS,P−

C ′S,P ) after applying relevant b→ s experimental constraints. The colour coding is the same as
in Fig. 2.
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(a) (b)

Figure 5: [Colour online] Fig. (a) shows allowed values of the AFB and S5 zero-crossing points
in the range q2 ∈ [0.5, 15] GeV2. The SM point and its uncertainty is shown as a black ellipse.
Fig. (b) shows the gradient of the AFB and S5 at the zero-point. For comparison, the line
G0(S5) = G0(AFB) is included. In each case the colour index has the same meaning as in Fig. 2.

uncertainties on these points, a larger region of q2 ∈ [0.5, 8.5] GeV2 was used for these analyses

following Ref. [19]. An ensemble of 1200 simulated Bd → K∗0(→ Kπ)µ+µ− data sets was

created, each containing the (Poisson fluctuated) number of signal and background expected

from 2 fb−1 of integrated luminosity at LHCb. Other integrated luminosities were obtained by

linearly scaling the yield estimates. Each analysis was then run in turn on the data sets in order

to estimate the statistical uncertainty expected for each measurement. This allows for a fair

comparison to be made between observables for a given integrated luminosity.

5.1 Data Set Generation

The theoretical framework introduced in Sec. 2 was implemented as a plug-in for the standard

decay tree simulation tool EvtGen [23]. This allows Bd → K∗0(→ Kπ)µ+µ− events to be

simulated. A simplified background sample was generated separately. This was flat in the

three decay angles defined in Sec. 3.1 but followed the signal distribution in q2 and a gently

falling exponential in the B invariant mass, mB. All events had mB within a wide window
+250
−150 MeV around the nominal B mass. A central signal region was also defined with width

±50 MeV. Events outside of this region were assumed to be part of a background dominated

side-band. Signal and background events were generated following the relative normalization

given in Refs [69, 70]. For each event in a data set, the three decay angles, q2 and mB were

determined and used as input for each analysis.

5.2 q2 Integrated Analyses

The integrated quantities can be extracted by estimating the number of signal events in each

angular bin using a fit to the mB distribution. The signal contribution was parametrized as a
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Gaussian with an exponential tail, while the background was modelled as an exponential with a

negative coefficient. A fit was performed to each data set to extract the signal and background

shape parameters for that sample. Each sample was then reduced into the relevant angular bins.

For AFB, following Eq. (20) these bins would be cos θl ∈ [−1, 0] and cos θl ∈ [0, 1] for all events

in the range q2 ∈ [1, 6] GeV2. To extract an estimate of the number of signal and background

events in each angular bin, a separate fit to the mB signal and background distributions was

then performed, keeping all shape parameters fixed. The value of 〈AFB〉1-6 GeV2 was determined

with Eq. (20). A similar procedure was applied to Eqs (21) and (22) to extract 〈FL〉1-6 GeV2 and

〈S5〉1-6 GeV2 .

5.3 q2 Dependent Analyses

Following Ref. [19], a polynomial shape was fit to the q2 distribution in each angular bin. The

method proceeds as in Sec. 5.2, using the B mass distribution to find the total number of signal

and background events in each angular bin. However, the background shape extracted is used

to estimate the number of signal events in the B mass signal window. The q2 dependence of the

signal and background distributions was parametrized using second and third order Chebyshev

polynomials respectively. A simultaneous fit in the signal and side-band regions of the B mass

distribution was used to determine the shape parameters of signal and background polynomials

using the relative signal/background normalization found from the B mass fits. In the case

of AFB, the procedure would lead to the extraction of two q2 dependent signal polynomials:

one for events with cos θl ∈ [−1, 0] and the other for cos θl ∈ [0, 1]. The value of AFB (q2)

can then be found using these polynomials and Eq. (20). The AFB zero-crossing point was

found numerically from the combined functions. A similar approach was applied to S5 and its

zero-crossing; however, six angular bins in θK∗ and φ were required.

5.4 Results

When comparing different observables and analyses it is useful to consider the mean expected

experimental sensitivity for a given integrated luminosity. These expected sensitivities can be

calculated from the ensemble of toy LHCb experiments introduced in Secs 5.2 and 5.3. 1200

individual experiments were performed, and for each one a value of, for example, q2
0(AFB) was

found. Following Ref. [13], the mean, one and two sigma contours could then be found from these

results. The method used allows for non-normally distributed results by putting the ensemble

in numerical order and then selecting the values closest to the contour2. Any biases introduced

can be identified by comparing the median result and input value. Example ensembles are

shown in Fig. 7 for q2
0(AFB) and q2

0(S5), assuming 2 fb−1 of LHCb data and following the SM.

2For the one sigma bound these would be the 188th and 1010th results in the ordered ensemble.
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Observable 2 fb−1 1 fb−1 0.5 fb−1

〈AFB〉1-6 GeV2
+0.03
−0.04

+0.05
−0.03

+0.08
−0.06

〈FL〉1-6 GeV2
+0.02
−0.02

+0.04
−0.03

+0.04
−0.06

〈S5〉1-6 GeV2
+0.07
−0.08

+0.09
−0.11

+0.16
−0.15

q2
0(AFB) +0.56

−0.94
+1.27
−0.97 –

q2
0(S5) +0.27

−0.25
+0.53
−0.40 –

Table 9: Estimated 1σ LHCb sensitivities for 2 fb−1, 1 fb−1 and 0.5 fb−1 of integrated luminosity,
assuming the SM.
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Figure 6: Projected experimental sensitivities to the observables AFB and S5 using an unbinned
polynomial fit to 2 fb−1 of LHCb data in the range q2 ∈ [0.5, 8.5] GeV2. The dashed line shows
the input distribution, while the solid line shows the median of an ensemble of 1200 fits. The
light and dark contours show the estimated one and two σ contours.

5.4.1 Integrated Quantities

The estimated 1σ sensitivities for the integrated observables 〈AFB〉1-6 GeV2 , 〈FL〉1-6 GeV2 and

〈S5〉1-6 GeV2 for toy LHCb data set sizes of 2 fb−1, 1 fb−1 and 0.5 fb−1 are shown in Tab. 9. Any

differences between the input and extracted median values were seen to be small relative to

the estimated uncertainties. The estimated LHCb experimental uncertainties are of a similar

size to the current theoretical uncertainties, and much smaller than the current experimental

constraints [8].

5.4.2 Zero-Crossings

Fig. 6 shows the projected experimental sensitivity to the full AFB and S5 distributions for

2 fb−1 of LHCb SM data. For ease of comparison with SM predictions, the zero-crossing point

is extracted from the q2 dependent distributions. These are shown in Fig. 7 for the same data

sets as used in Fig. 6. The estimated 1σ uncertainties are shown in Tab. 9. As discussed in

Ref. [17], the experimental uncertainty will scale approximately linearly with the gradient at

the zero-crossing, leading to the large difference in estimated sensitivities seen for q2
0(AFB) and
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Figure 7: Projected experimental sensitivities to the zero-crossings of AFB and S5 using an
unbinned polynomial fit to 2 fb−1 of LHCb data in the range q2 ∈ [0.5, 8.5] GeV2. The colour
coding is the same as in Fig. 6.

q2
0(S5) in Tab. 9.

The difference in gradients between AFB and S5, seen in Fig. 5b for the majority of NP

points, makes q2
0(S5) an attractive experimental target, assuming that any practical difficulties

associated with the θK∗ and φ decay angles can be overcome. We see that the relative steepness

of the S5 distribution is such that the experimental uncertainty on q2
0(S5) should be compet-

itive with that on q2
0(AFB) for the majority of the allowed regions of parameter space. For

0.5 fb−1, biases on the zero-crossing points become significant when using the unbinned analysis

technique; however, it is likely that coarse estimates of q2
0(AFB) and q2

0(S5) could be extracted

even at this relatively small integrated luminosity using alternative techniques, such as those

discussed in Ref. [18].

6 Impact of Future Measurements

The relative impact of the different analyses presented in Sec. 5 can be assessed by revisiting

the parameter space exploration performed in Sec. 4. We are interested in how including these

new measurements would affect the current constraints on parameter space. It is assumed that

LHCb will make 2 fb−1 measurements of the observables 〈AFB〉1-6 GeV2 , 〈S5〉1-6 GeV2 , 〈FL〉1-6 GeV2 ,

q2
0(AFB), and q2

0(S5) and that the resulting experimental uncertainties are symmetrized versions

of those given in Tab. 9. In addition, we assume that the measured values of these observables are

not affected by NP, and are as given in Tab. 8. The total χ2 for each point in parameter space is

then updated to reflect these hypothetical SM measurements. Where individual measurements

are superseded by LHCb measurements, they are replaced with no attempt at combination.

However, other constraints, such as B(B → Xsγ), are included as before. In this way the

constraining power of each analysis can be compared.

Fig. 8 shows the relative impact of these measurements on the NP component of Ceff
7 . In

Fig. 8a, SM values of 〈AFB〉1-6 GeV2 and q2
0(AFB) are imposed with the estimated 2 fb−1 experi-

mental sensitivities taken from Tab. 9. Fig. 8b shows the impact of 〈FL〉1-6 GeV2 , while Fig. 8c

shows the impact of both 〈S5〉1-6 GeV2 and q2
0(S5) for the same LHCb integrated luminosity.

These should be compared with the currently allowed Ceff
7 parameter space shown in Fig. 2.
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(a) 〈AFB〉1-6GeV2 & q20(AFB) (b) 〈FL〉1-6GeV2

(c) 〈S5〉1-6GeV2 & q20(S5)

Figure 8: [Colour online] The relative impact of different proposed LHCb measurements after
2 fb−1 of integrated luminosity, assuming the SM, on the NP component of Ceff

7 . In each case
the colour index has the same meaning as in Fig. 2.
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Figure 9: [Colour online] Allowed parameter space for the Wilson coefficients Ceff
7 , C ′ eff

7 , Ceff
9

and C ′ eff
10 after 2 fb−1 measurements at LHCb of 〈FL〉1-6 GeV2 , 〈AFB〉1-6 GeV2 , q2

0(AFB), 〈S5〉1-6 GeV2

and q2
0(S5), assuming the SM. The colour coding is the same as in Fig. 2.

The small statistical uncertainty found in Sec. 5 for q2
0(S5) provides a stringent constraint on

parameter space. This emphasizes the importance of an early measurement of S5, in addition

to AFB and FL.

Fig. 9 shows the combined effect of the measurement of the proposed observables, again

assuming the SM and the estimated sensitivities from Tab. 9 for the NP contribution to the

Wilson coefficients Ceff
7 , C ′ eff

7 , Ceff
9 and C ′ eff

10 . The amount of parameter space left after these

measurements would be significantly reduced, with most NP contributions excluded at the 1σ

level unless there are large NP phases present. This again illustrates the importance of CP

observables as described in [14, 15]. The FBMSSM and GMSSM models from Sec. 3.2 could

also be excluded at better than 95% confidence in this case.
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7 Summary

A new next-to-leading order model of the decay Bd → K∗0µ+µ−, that features QCD factoriza-

tion corrections and full LCSR form factors, was presented. This includes an expression for the

decay amplitude in terms of an updated set of auxiliary functions; these can be compared dir-

ectly to the previous model, based on Ref. [22]. The auxiliary functions have been extended to

include the effects of primed, scalar, and pseudoscalar operators, which may become important

in certain NP scenarios.

The observables AFB, FL, and S5 were identified as being promising for a relatively early

measurement at the LHC, as they can be extracted as a function of q2 by counting signal

events in specific angular bins, using Eqs (20)–(22), and correspond to large features in the

angular distribution. We also obtained a simple expression for q2
0(S5) at leading order, in terms

of Ceff
7 , C ′ eff

7 , and Ceff
9 , and showed that it has reduced hadronic form factor uncertainties in

the large-recoil limit. Considering current experimental constraints leads to restrictions on the

possible NP contributions to the Wilson coefficients. The allowed values of the AFB and S5

zero-crossing points, and the gradient of the AFB and S5 distributions at these points, were

explored. The relative steepness of the S5 distribution, even in the presence of NP, makes

q2
0(S5) an experimentally attractive target, as it will lead to a smaller experimental uncertainty.

In order to investigate the impact of measuring the proposed observables on the NP con-

tributions to the Wilson coefficients, and to compare their relative impact, we estimated their

sensitivities at LHCb. We studied the sensitivity to the q2 integrated values and zero-crossing

points of AFB, FL, and S5. The prospect of measuring S5 and its zero-crossing at LHCb has

not been previously explored.

Using a combination of 〈FL〉1-6 GeV2 , 〈AFB〉1-6 GeV2 , q2
0(AFB), 〈S5〉1-6 GeV2 , and q2

0(S5), we

showed that 2 fb−1 of LHCb data could greatly reduce the allowed parameter space. The

contribution of S5 to this is very significant and can, in part, be attributed to the small statistical

uncertainty expected on q2
0(S5). We have also shown that if the decay is SM-like, the GMSSM

and FBMSSM points considered would be ruled out by LHCb with 2 fb−1. We conclude by

stressing that making measurements of S5 and its zero-crossing would provide an interesting

and complementary measurement to others currently planned. Bd → K∗0µ+µ− is a promising

channel for constraining models or making a NP discovery. We look forward to the first LHC

results for this decay.
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Appendix

A Operator Basis

The effective Hamiltonian for Bd → K∗0µ+µ− can be expressed in terms of effective operators

and Wilson coefficients as described in Sec. 2.2. We provide explicit expressions for a subset of

these operators, which play a key role in the decay. Definitions for the remaining operators can

be found in Ref. [14].

O7 =
e

g2
m̄b(s̄σµνPRb)F

µν , O′7 =
e

g2
m̄b(s̄σµνPLb)F

µν , (27)

O8 =
1

g
m̄b(s̄σµνT

aPRb)G
µν a, O′8 =

1

g
m̄b(s̄σµνT

aPLb)G
µν a, (28)

O9 =
e2

g2
(s̄γµPLb)(µ̄γ

µµ), O′9 =
e2

g2
(s̄γµPRb)(µ̄γ

µµ), (29)

O10 =
e2

g2
(s̄γµPLb)(µ̄γ

µγ5µ), O′10 =
e2

g2
(s̄γµPRb)(µ̄γ

µγ5µ), (30)

OS =
e2

16π2
m̄b(s̄PRb)(µ̄µ), O′S =

e2

16π2
m̄b(s̄PLb)(µ̄µ), (31)

OP =
e2

16π2
m̄b(s̄PRb)(µ̄γ5µ), O′P =

e2

16π2
m̄b(s̄PLb)(µ̄γ5µ), (32)

where g is the strong coupling constant, e is the electron charge, mb is the b quark mass in the

MS scheme, as described in Sec. 2, and PL,R = (1∓ γ5)/2.

B Angular Coefficients

Here we provide the relations between the angular coefficients, I
(s/c)
i , defined in Sec. 3.1 and

the auxiliary functions defined in Eq. (8). We first express the I
(s/c)
i ’s in terms of transversity

amplitudes as in Ref. [15].

Is1 =
(2 + β2)

4

[
|AL⊥|2 + |AL‖ |

2 + (L→ R)
]

+
4m2

µ

q2
Re
(
AL⊥A

R
⊥
∗

+AL‖ A
R
‖
∗)

(33)

Ic1 = |AL0 |2 + |AR0 |2 +
4m2

µ

q2

[
|At|2 + 2Re(AL0 A

R
0
∗
)
]

+ β2|AS |2, (34)

Is2 =
β2

4

[
|AL⊥|2 + |AL‖ |

2 + (L→ R)
]
, (35)

Ic2 = −β2
[
|AL0 |2 + (L→ R)

]
, (36)

I3 =
1

2
β2
[
|AL⊥|2 − |AL‖ |

2 + (L→ R)
]
, (37)

I4 =
1√
2
β2
[
Re(AL0 A

L
‖
∗
) + (L→ R)

]
, (38)
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I5 =
√

2β

[
Re(AL0 A

L
⊥
∗
)− (L→ R)− mµ√

q2
Re(AL‖A

∗
S +AR‖ A

∗
S)

]
, (39)

Is6 = 2β
[
Re(AL‖ A

L
⊥
∗
)− (L→ R)

]
, (40)

Ic6 = 4β
mµ√
q2

Re
[
AL0A

∗
S + (L→ R)

]
, (41)

I7 =
√

2β

[
Im(AL0 A

L
‖
∗
)− (L→ R) +

mµ√
q2

Im(AL⊥A
∗
S +AR⊥A

∗
S)

]
, (42)

I8 =
1√
2
β2
[
Im(AL0 A

L
⊥
∗
) + (L→ R)

]
, (43)

I9 = β2
[
Im(AL‖

∗
AL⊥) + (L→ R)

]
. (44)

These transversity amplitudes are projections of the decay amplitude onto various combinations

of helicity states of the K∗ and the virtual gauge boson. The projections can be achieved by

contracting T 1/2
µ with the virtual gauge boson polarization vector. We use four basis vectors for

the virtual gauge boson polarization vector corresponding to transverse (±), longtitudinal (0)

and time-like (t) states, and three basis vectors for the virtual gauge boson polarization vector

corresponding to transverse (±) and longtitudinal (0) states. One first extracts the helicity

amplitudes H+, H− and H0 using the basis polarization vectors +,-,0 respectively for both the

K∗ and the virtual gauge boson. Ht is found by taking the longtitudinal polarization vector for

the K∗ and the time-like polarization vector for the virtual gauge boson. Using the relations

A⊥/‖ =
H+ ∓H−√

2
(45)

and A0 = H0, At = Ht, one then obtains expressions for the transversity amplitudes in terms

of A(q2) to S(q2),

Ai⊥(q2) =
√

2λN mB ci(q
2) (46)

Ai‖(q
2) = −

√
2N mB ai(q

2) (47)

Ai0(q2) =
N mB

m̂K∗
√
q̂2

(
−

1− m̂2
K∗ − q̂2

2
ai(q

2) + λ bi(q
2)

)
(48)

At(q
2) =

N mB

√
λ

m̂K∗
√
q̂2

(
F (q2)− (1− m̂K∗)G(q2)− q̂2H(q2)

)
, (49)

where i = L/R. We use the standard normalization and definitions following Ref. [12],

β =

√
1−

4m2
µ

q2
(50)

λ =1 + m̂4
K∗ + q̂4 − 2

(
q̂2 + m̂2

K∗
(
1 + q̂2

))
(51)

N =

(
G2
F α

2

3 · 210π5mB
|VtsV ∗tb|2q2 λ1/2 β

) 1
2

, (52)
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where α is the electromagnetic coupling constant and GF is the Fermi constant. In the above

definitions of the transversity amplitudes, the functions aL/R(q2), bL/R(q2), cL/R(q2), are ana-

logous to those defined in Ref. [71],

aL/R(q2) = B(q2)∓ F (q2), (53)

bL/R(q2) =
1

2

(
C(q2)∓G(q2)

)
, (54)

cL/R(q2) =
1

2

(
A(q2)∓ E(q2)

)
. (55)

Using the above it is possible to compare the predictions of Eqs (8) to the standard results in

the literature, and we agree with Ref. [15].
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