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Abstract: We present a complete method to construct QCD-protected observables based

on the exclusive 4-body B-meson decay Bd → K∗0`+`− in the low dilepton mass region.

The core of the method is the requirement that the constructed quantities should fulfil the

symmetries of the angular distribution. We have identified all symmetries of the angular

distribution in the limit of massless leptons and explore: a new non-trivial relation between

the coefficients of the angular distribution, the possibility to fully solve the system for the

K∗ amplitudes, and the construction of non-trivial observables.

We also present a phenomenological analysis of the new physics sensitivity of angular

observables in the decay based on QCD factorisation. We further analyse the CP -conserving

observables, A
(2)
T , A

(3)
T and A

(4)
T . They are practically free of theoretical uncertainties due

to the soft form factors for the full range of dilepton masses rather than just at a single

point as for AFB. They also have a higher sensitivity to specific new physics scenarios

compared to observables such as AFB. Moreover, we critically examine the new physics

reach of CP -violating observables via a complete error analysis due to scale dependences,

form factors and Λ/mb corrections. We have developed an ensemble method to evaluate

the error on observables from Λ/mb corrections. Finally, we explore the experimental

prospects of CP -violating observables and find that they are rather limited. Indeed, the

CP -conserving (averaged) observables A
(i)
T (with i = 2, 3, 4) will offer a better sensitivity

to large CP phases and may be more suitable for experimental analysis.
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1. Introduction

The LHC era is just beginning. Flavour physics will play an important complementary role

to direct searches for the theory that lies beyond the standard model (SM). One central

strategy in this period is to construct observables that are mostly sensitive to specific

types of new physics (NP), in such a way that a deviation could immediately provide

information on the type of NP required: isospin breaking NP, presence of right-handed

currents, scalars, etc. It is essential to work in a bottom up approach in the direction of

constructing a decision tree that help us to discern which features the NP model must

incorporate and then try to match them into a group of models.

Few decays are able to provide such a wealth of information with different observables

as Bd → K∗0`+`−, ranging from forward-backward asymmetries (AFB) and isospin asym-

metries to a large number of angular observables. Each of these observables can provide

information on the different types of NP mentioned above. First published results from

BELLE [1] and BABAR [2] based on O(100) decays already demonstrate their feasibility.

In the early years of LHC running one will be restricted to those observables that

may be extracted from the angular distribution using relatively simple analyses. A study

of those observables relevant for the first few fb−1 may be found in [3]. However, once

enough statistics have been accumulated to perform a full angular analysis based on the full

4-body decay distribution of the Bd → K∗0`+`−, one has the freedom to design observables

with reduced theoretical uncertainties and specific NP sensitivity.

In [4], it was proposed to construct observables that maximise the sensitivity to con-

tributions driven by the electro-magnetic dipole operator O′7, while, at the same time,

minimising the dependence on the poorly known soft form factors. This led to the con-

struction of the observable A
(2)
T , based on the parallel and perpendicular spin amplitudes

of the K∗0. The basic idea behind the construction of the observable was inspired by the

zero point of AFB when calculated as a function of the dilepton mass squared, q2. The

zero point has attracted a lot of attention because of its cleanliness; only at that point one

gets a complete cancellation at LO of the form factor dependence and its precise position

may provide information on the fundamental theory that lies beyond the SM. For A
(2)
T the

soft form factor dependence cancels at LO, not only at one point, but in the full q2 region

thus providing much more experimental information. Moreover, the angular observable is

highly sensitive to new right-handed currents driven by the operator O′7 [5], to which AFB

is blind.

Looking for the complete set of angular observables sensitive to right-handed currents,

one is guided to the construction of the so-called A
(3)
T and A

(4)
T which include longitudinal

spin amplitudes [6]. The observables A
(i)
T (with i = 2, 3, 4) use the K∗0 spin amplitudes as

the fundamental building block. This provides more freedom to disentangle the information

on specific Wilson coefficients than just restricting oneself to use the coefficients of the

angular distribution as it was recently done in [7]. For instance, A
(2)
T , being directly

proportional to C′7 enhances its sensitivity to the type of NP entering this coefficient.

Moreover, using each coefficient of the angular distribution instead of selected ratios of

them induces a larger sensitivity to the soft form factors.
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The spin amplitudes are not directly observable quantities; to ensure that a quan-

tity constructed out of the spin amplitudes can be observed, it is necessary that it fulfils

the same symmetries as the angular distribution. This observation has the important

consequence [6], that A
(1)
T (first proposed in [8]) cannot be extracted from the angular

distribution because it does not respect all its symmetries. Only a measurement of definite

helicity distributions would allow it, but that is beyond any particle physics experiment

that can currently be imagined [6].

To identify all the symmetries of the angular distribution is one of the main results of

this paper. We discuss the counting of all the symmetries of the distribution in different

scenarios, with and without scalars and with and without mass terms. We explain the

general method of infinitesimal transformations that allow us to identify all the symmetries,

and we develop here in full detail the explicit form of the four symmetries in the massless

case with no scalars. As an important cross check of this result, we solve explicitly the set

of spin amplitudes in terms of the coefficients of the distribution, making use of three out

of the four symmetries. Two important consequences of this analysis are: in solving the

system one naturally encounters an extra freedom to fix one of the variables, and there is a

non-trivial constraint between the coefficients of the angular distribution considered before

as free parameters. It is remarkable that this unexpected constraint is valid for any decay

that has this same structure.

Finally, we provide an illustrative example of the use of the method of designing

observables with an observable called A
(5)
T that mixes simultaneously left/right and per-

pendicular/parallel spin amplitudes in a specific way that none of the coefficients of the

angular distribution exhibits, opening different sensitivities to Wilson coefficients.

In the second part of the paper we present a phenomenological analysis of the various

angular observables based on a QCD factorisation (QCDf) calculation to NLO precision.

Recently, a very detailed analysis of angular quantities of the decay Bd → K∗0µ+µ−

in various NP scenarios [7] and also an analysis of the NP sensitivities of angular CP

asymmetries [9] were presented. In contrast to the former work [7], we do not assume that

the main part of the Λ/mb corrections are inside the QCD form factors, but use the soft

form factors and develop a new ensemble method for treating these unknown corrections in

a systematic way. The main differences to the latter analysis of CP violating observables is

the redefinition of the CP asymmetries in order to eliminate the soft form factor dependence

at LO and the inclusion of the Λ/mb corrections into the error budget, which turn out to

be significant in the presence of new weak phases.

In [6] the experimental preparations for an indirect NP search using these angular

observables were worked out, showing that a full angular analysis of the decay Bd →
K∗0µ+µ− at the LHCb experiment offers great opportunities. We re-evaluate this analysis

in light of the fourth symmetry for the angular distribution and conclude that it has no

effect on the estimated experimental errors as all observables are indeed invariant under

this symmetry. We extend the experimental sensitivity study to CP -violating observables

and show that even with an upgraded LHCb there is no real sensitivity to CP -violating

NP phases in C9 and C10.

The paper is organised as follows: Sec. 2 briefly recall the differential distribution
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in Bd → K∗0`+`− and the theoretical framework of QCDf and soft-collinear effective

theory (SCET), Sec. 3 extends and completes our previous discussion about symmetries

in the angular distribution, its experimental consequences are discussed in Sec. 4, and we

perform a phenomenological analysis of the CP -violating and CP -conserving observables

in Secs. 5 and 6 respectively.

2. Theoretical framework

The separation of NP effects and hadronic uncertainties is the key issue when using flavour

observables in a NP search. Our analysis is based on QCDf and SCET and critically

examines the NP reach of those observables via a detailed error analysis including the

impact of the unknown Λ/mb corrections. In order to make the paper self contained, we

briefly recall the various theoretical ingredients of our analysis.

2.1 Differential decay distribution

The decay Bd → K∗0`+`−, with K∗0 → K−π+ on the mass shell, is completely described

by four independent kinematic variables, the lepton-pair invariant mass squared, q2, and the

three angles θl, θK , φ. Summing over the spins of the final state particles, the differential

decay distribution of Bd → K∗0`+`− can be written as

d4Γ

dq2 d cos θl d cos θK dφ
=

9

32π
J(q2, θl, θK , φ) , (2.1)

The dependence on the three angles can be made more explicit:

J(q2, θl, θK , φ) =

= J1s sin2 θK + J1c cos2 θK + (J2s sin2 θK + J2c cos2 θK) cos 2θl + J3 sin2 θK sin2 θl cos 2φ

+J4 sin 2θK sin 2θl cosφ+ J5 sin 2θK sin θl cosφ+ (J6s sin2 θK + J6c cos2 θK) cos θl

+J7 sin 2θK sin θl sinφ+ J8 sin 2θK sin 2θl sinφ+ J9 sin2 θK sin2 θl sin 2φ . (2.2)

As the signs of the expression depend on the exact definition of the angles, we have made

their definition explicit in Appendix A.

The Ji depend on products of the six complex K∗ spin amplitudes, AL,R‖ , AL,R⊥ and

AL,R0 in the case of the SM with massless leptons. Each of these is a function of q2. The

amplitudes are just linear combinations of the well-known helicity amplitudes describing

the B → Kπ transition:

A⊥,‖ = (H+1 ∓H−1)/
√

2 , A0 = H0 . (2.3)

Two generalisations will be made from the massless case within our analysis: if the leptons

are considered massive the additional amplitude At has to be introduced. And if we allow

for scalar operators, there is a new amplitude AS . Both can be introduced independently

of the other. For the Ji we find the following expressions (see also [10, 11, 12, 4]):

J1s ≡ a =
(2 + β2

` )

4

[
|AL⊥|2 + |AL‖ |

2 + (L→ R)
]

+
4m2

`

q2
Re
(
AL⊥A

R
⊥
∗

+AL‖ A
R
‖
∗)
, (2.4a)
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J1c ≡ b = |AL0 |2 + |AR0 |2 +
4m2

`

q2

[
|At|2 + 2Re(AL0 A

R
0
∗
)
]

+ β2
` |AS |2, (2.4b)

J2s ≡ c =
β2
`

4

[
|AL⊥|2 + |AL‖ |

2 + (L→ R)
]
, (2.4c)

J2c ≡ d = −β2
`

[
|AL0 |2 + (L→ R)

]
, (2.4d)

J3 ≡ e =
1

2
β2
`

[
|AL⊥|2 − |AL‖ |

2 + (L→ R)
]
, (2.4e)

J4 ≡ f =
1√
2
β2
`

[
Re(AL0 A

L
‖
∗
) + (L→ R)

]
, (2.4f)

J5 ≡ g =
√

2β`

[
Re(AL0 A

L
⊥
∗
)− (L→ R)− m`√

q2
Re(AL‖A

∗
S +AR‖ A

∗
S)

]
, (2.4g)

J6s ≡ h = 2β`

[
Re(AL‖ A

L
⊥
∗
)− (L→ R)

]
, (2.4h)

J6c ≡ h∗ = 4β`
m`√
q2

Re
[
AL0A

∗
S + (L→ R)

]
, (2.4i)

J7 ≡ j =
√

2β`

[
Im(AL0 A

L
‖
∗
)− (L→ R) +

m`√
q2

Im(AL⊥A
∗
S +AR⊥A

∗
S)

]
, (2.4j)

J8 ≡ k =
1√
2
β2
`

[
Im(AL0 A

L
⊥
∗
) + (L→ R)

]
, (2.4k)

J9 ≡ m = β2
`

[
Im(AL‖

∗
AL⊥) + (L→ R)

]
, (2.4l)

with

β` =

√
1−

4m2
`

q2
. (2.5)

The notations with the letters a-m has been included to make the comparison to [6] easier.

Note that J6c = 0 in the massless case.

The amplitudes themselves can be parametrised in terms of the seven B → K∗ form

factors by means of a narrow-width approximation. They also depend on the short-distance

Wilson coefficients Ci corresponding to the various operators of the effective electroweak

Hamiltonian. The precise definitions of the form factors and of the effective operators are

given in [6]. Assuming only the three most important SM operators for this decay mode,

namely O7, O9, and O10, and the chirally flipped ones, being numerically relevant, we have

AL,R⊥ = N
√

2λ1/2

[{
(C(eff)

9 + C
′(eff)
9 )∓ (C(eff)

10 + C
′(eff)
10 )

} V (q2)

mB +mK∗
+

+
2mb

q2
(C(eff)

7 + C
′(eff)
7 )T1(q2)

]
, (2.6a)

AL,R‖ = −N
√

2(m2
B −m2

K∗)

[{
(C(eff)

9 − C
′(eff)
9 )∓ (C(eff)

10 − C
′(eff)
10 )

} A1(q2)

mB −mK∗
+

+
2mb

q2
(C(eff)

7 − C
′(eff)
7 )T2(q2)

]
, (2.6b)

AL,R0 = − N

2mK∗
√
q2

[{
(C(eff)

9 − C
′(eff)
9 )∓ (C(eff)

10 − C
′(eff)
10 )

}
×
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×
{

(m2
B −m2

K∗ − q2)(mB +mK∗)A1(q2)− λA2(q2)

mB +mK∗

}
+

+ 2mb(C
(eff)
7 − C

′(eff)
7 )

{
(m2

B + 3m2
K∗ − q2)T2(q2)− λ

m2
B −m2

K∗
T3(q2)

}]
, (2.6c)

At = Nλ1/2/
√
q2
{

2(C(eff)
10 − C

′(eff)
10 )

}
A0(q2) , (2.6d)

where the Ci denote the corresponding Wilson coefficients and

λ = m4
B +m4

K∗ + q4 − 2(m2
Bm

2
K∗ +m2

K∗q
2 +m2

Bq
2), (2.7)

N =

√√√√ G2
Fα

2

3 · 210π5m3
B

|VtbV ∗ts|2q2λ1/2

√
1−

4m2
`

q2
. (2.8)

Finally we note that, if one additionally considers scalar operators then At is modified

by the new Wilson coefficients and an additional amplitude, AS , proportional to the form

factor A0(q2), is introduced.

2.2 QCDf/SCET framework

The up-to-date predictions of exclusive modes are based on QCDf and its quantum field

theoretical formulation, soft-collinear effective theory (SCET) [13, 14]. The crucial the-

oretical observation is that in the limit where the initial hadron is heavy and the final

meson has a large energy [15] the hadronic form factors can be expanded in the small

ratios ΛQCD/mb and ΛQCD/E, where E is the energy of the meson that picks up the s

quark from the Bd decay. Neglecting corrections of order 1/mb and αs, the seven a-priori

independent B → K∗ form factors reduce to two universal form factors ξ⊥ and ξ‖ [15, 16].

These relations can be strictly derived within the QCDf and SCET approach and lead to

simple factorisation formulae for the B → K∗ form factors

Fi(q
2) ≡ Hi ξ + ΦB ⊗ Ti ⊗ ΦK∗ +O(Λ/mb) . (2.9)

There is also a similar factorisation formula for the decay amplitudes. The rationale of such

formulae is that the hard vertex renormalisations (Hi) and the hard scattering kernels (Ti)

are quantities that can be computed perturbatively so they can be separated from the

process-independent non-perturbative functions that go with them, the soft form factors

(ξ) and the light-cone wave functions (Φi), respectively.

In general we have no means to calculate Λ/mb corrections to the QCDf amplitudes

so they are treated as unknown corrections, with the method used for this described in the

following section. This leads to a large uncertainty of theoretical predictions based on the

QCDf/SCET which we will explore systematically and make manifest in our phenomeno-

logical analysis.

We do not follow here the approach of [7] where the full QCD form factors are used in

the QCDf formulae. There it is assumed that the main part of the Λ/mb corrections are

inside the QCD form factors, and additional Λ/mb corrections are neglected.

The theoretical simplifications of the QCDf/SCET approach are restricted to the kine-

matic region in which the energy of the K∗ is of the order of the heavy quark mass,
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i.e. q2 � m2
B. Moreover, the influences of very light resonances below 1 GeV2 question the

QCDf results in that region. In addition, the longitudinal amplitude in the QCDf/SCET

approach generates a logarithmic divergence in the limit q2 → 0 indicating problems in

the theoretical description below 1 GeV2 [13]. Thus, we will confine our analysis of all

observables to the dilepton mass in the range, 1 GeV2 6 q2 6 6 GeV2.

Using the discussed simplifications, the K∗ spin amplitudes at leading order in 1/mb

and αs have a very simple form:

AL,R⊥ =
√

2NmB(1− ŝ)
[
(C(eff)

9 + C
′(eff)
9 )∓ (C10 + C′10) +

2m̂b

ŝ
(C(eff)

7 + C
′(eff)
7 )

]
ξ⊥(EK∗),

(2.10a)

AL,R‖ = −
√

2NmB(1− ŝ)
[
(C(eff)

9 − C
′(eff)
9 )∓ (C10 − C

′
10) +

2m̂b

ŝ
(C(eff)

7 − C
′(eff)
7 )

]
ξ⊥(EK∗) ,

(2.10b)

AL,R0 = − NmB

2m̂K∗
√
ŝ

(1− ŝ)2

[
(C(eff)

9 − C
′(eff)
9 )∓ (C10 − C

′
10) + 2m̂b(C

(eff)
7 − C

′(eff)
7 )

]
ξ‖(EK∗) ,

(2.10c)

At =
NmB

m̂K∗
√
ŝ

(1− ŝ)2

[
C10 − C

′
10

]
ξ‖(EK∗) , (2.10d)

with ŝ = q2/m2
B, m̂i = mi/mB. Here we neglected terms of O(m̂2

K∗). The scalar spin

amplitude AS is also proportional to ξ‖(EK∗) in this limit.

The symmetry breaking corrections of order αs can be calculated in the QCDf/SCET

approach. Those NLO corrections are included in our numerical analysis following [13,

14]. They are presented in the Appendix of [6]. Here we only note that we stick to

the renormalisation conventions for soft form factors of [16], in particular for A0(q2) =
EK∗
mK∗

ξ‖(EK∗). This normalisation holds at all orders implying that there are no NLO

corrections to the form factor A0(q2) and consequently to the spin amplitude At (and AS).

2.3 Estimating Λ/mb corrections

Our observables have reduced theoretical uncertainties due to the cancellation of the soft

form factors. However, the relations used to make these cancellations are only valid at LO in

the Λ/mb expansion, and corrections to higher orders are unknown. For these theoretically

clean observables to be useful, the impact of these corrections on the observables must be

robustly bounded. If NP is to be discovered in Bd → K∗0`+`−, it must be possible to

demonstrate that any effect seen is indeed NP and not just the effect of an unknown SM

correction.

To evaluate the effect of the Λ/mb corrections, we parametrise each of the K∗0 spin-

amplitudes with some unknown linear correction,

A′i = Ai(1 + Cie
iθi), (2.11)

where Ci is the relative amplitude and θi the relative strong phase. If we vary Ci and

θi within their allowed ranges, an estimate for the theoretical uncertainty due to these
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unknown parameters can be found. In order to make this parametrisation generic, however,

extra terms must be introduced. In principle the effective Hamiltonian which controls the

decay has three terms,

Heff = H(u)SM
eff +H(t)SM

eff +H(t)NP
eff . (2.12)

The first term is very small as it is suppressed by the factor λu = VubV
∗

us/VtbV
∗

ts but is

responsible for all the SM CP -violation in the decay; the second term is responsible for

the decay in the SM; and the third adds possible NP contributions. A fourth possible

term H(u)NP
eff generically does not contribute to the model independent amplitudes and is

neglected. Each of these contributions is generated by different sets of diagrams and may

have different values of Ci and θi. Each amplitude must be modified to include the three

sub-amplitudes

A′ =
[
(ASM(λu 6= 0)−ASM(λu = 0))× (1 + C1e

iθ1)
]

+[
ASM(λu = 0)× (1 + C2e

iθ2)
]

+[
(AFull(λu 6= 0)−ASM(λu 6= 0))× (1 + C3e

iθ3)
]
. (2.13)

The sub-amplitudes can be reconstructed by applying Eq. (2.13) to the SM amplitudes

with (λu 6= 0) and without (λu = 0) the CP -violating contributions. The full amplitude

AFull(λu 6= 0) includes all NP and SM contributions, however it is assumed that only a

single NP operator is active so as not to introduce extra terms.

An estimate of the theoretical uncertainty arising from the unknown Λ/mb corrections

and strong phases can now be made using a randomly selected ensemble. For each member

of the ensemble, values of C1−3 and θ1−3 are chosen in the ranges Ci ∈ [−0.1, 0.1] or

Ci ∈ [−0.05, 0.05] and θi ∈ [−π, π] using a random uniform distribution. This is done

for the seven amplitudes, At, A
L,R
0 , AL,R‖ , AL,R⊥ , to provide a complete description of the

decay. It is assumed that the corrections and phases are not functions of q2, although in

practise they may actually be. Any unknown correlations are also ignored. While these

effects could lead to an underestimate of the theoretical envelope, it is thought that this

method allows for a conservative estimate of the theoretical uncertainties to be made.

To estimate the contribution to the theoretical uncertainties from Λ/mb corrections

for a particular observable, each element in the ensemble was used to calculate the value

of that observable at a fixed value of q2. A one σ error is evaluated as the interval that

contains 66% of the values around the median. This is done for both Ci ∈ [−0.05, 0.05] and

Ci ∈ [−0.1, 0.1] to illustrate the effects of five and ten percent corrections. By repeating

this process for different values of q2, bands can be built up. These show the likely range

of values that the observable will have in the presence of a small and approximately linear

correction and strong phase.

The choice |Ci| < 10% is based on a simple dimensional estimate. We emphasize here

that there is no strict argument available to bound the Λ/mb corrections this way. But we

can state that the chiral enhancement of Λ/mb corrections in the case of hadronic B decays

does not happen in the case of the semileptonic decay mode with a vector final state.
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The process described here avoids any assumptions about correlations between the

corrections and is thus statistically more rigorous than what was done in [6], where cor-

rections to amplitudes were considered one by one and then added in quadrature. The

Λ/mb bands it produces are reduced when compared to those of [6]. It also allows us to

investigate the effect of the Λ/mb corrections for CP -violating observables.

3. Symmetries and observables

The experimental degrees of freedom determined by the Ji terms and the theoretical degrees

of freedom determined by the spin amplitudes Aj have to match. There are two effects to

consider for this: different values of the Aj can give rise to the same differential distribution

Eq. (2.1) and thus can’t be distinguished; and in some cases the experimental coefficients

are not independent meaning that not all arbitrary values of the Ji are possible. The first

effect we call a continuous symmetry transformation. For the degrees of freedom to match

we have

nc − nd = 2nA − ns , (3.1)

where nc is the number of coefficients in the differential distribution (the number of Ji),

nd the number of dependencies between the different coefficients, nA the number of spin

amplitudes (the Aj , each is complex and hence has two degrees of freedom), and ns the

number of continuous symmetries.

We considered this situation in our previous paper [6] for the case of massless leptons

and return to it again here. It is easy to see that in the massless limit, J1s = 3J2s and

J1c = −J2c. What is not so obvious is that J9 can be expressed in terms of the other 8

remaining coefficients. Going back to Eq. (3.1) it can be seen that the massless case in fact

must have 4 symmetries and not 3 as we claimed in the previous paper. See details below

for this.

Below we first outline how the symmetries and dependencies can be identified before

we move onto their explicit form and the interpretation.

3.1 Infinitesimal symmetries

By an infinitesimal symmetry is meant one where the theoretical spin amplitudes Aj are

changed in an infinitesimal way leaving the Ji coefficients in Eq. (2.4) unchanged. The

infinitesimal symmetries will define a system of coupled ordinary differential equations

that, if solved, are the global symmetries we look for. There is no guarantee that these

symmetries will allow for the continuous transformation between two arbitrary sets of

amplitudes which have the identical angular distribution; there could in principle be several

disjoint regions separated by divergences.

If we, in this example, look at massless leptons and ignore the scalar amplitude, we

define the coefficients of the spin amplitudes as a vector ~A with 12 components

~A =
(

Re(AL⊥), Im(AL⊥),Re(AL‖ ), Im(AL‖ ),Re(AL0 ), Im(AL0 ),

Re(AR⊥), Im(AR⊥),Re(AR‖ ), Im(AR‖ ),Re(AR0 ), Im(AR0 )
)

(3.2)
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corresponding to the real and imaginary parts of the amplitudes. For each of the coefficients

Ji we can find the derivative with respect to the spin amplitudes. As an example

~∇(J1c) =
(
0, 0, 0, 0, 2Re(AL0 ), 2Im(AL0 ), 0, 0, 0, 0, 2Re(AR0 ), 2Im(AR0 )

)
. (3.3)

There will be eleven such gradient vectors in the massless case, as J6c = 0.

Now, consider any infinitesimal transformation can be written on the form

~A′ = ~A+ δ~s . (3.4)

For the infinitesimal transformation to leave the coefficients unchanged, the vector δ~s has

to be perpendicular to the hyperplane spanned by the set of gradient vectors. Or in other

words δ~s represents a symmetry if, and only if

∀i ∈ Ji : ~∇i ⊥ δ~s . (3.5)

Looking back at Eq. (3.1) we have, for the massless case, nc = 11. If the Ji were all

independent the gradient vectors would span an 11 dimensional hyperplane. In fact, it turns

out, that they only span 8 dimensions∗, which shows that there are three dependencies

between the Ji’s, giving nd = 3. As we have nA = 6 from the amplitudes we see from

Eq. (3.1) that we have ns = 4 corresponding to 4 symmetries. For the dependencies, only

the first two J1s = 3J2s and J1c = −J2c are trivial; the third one we derive in the next

section.

3.2 Explicit form of symmetries

It is helpful for the discussion to make the following definitions.

n1 = (AL‖ , A
R
‖
∗
) , (3.6a)

n2 = (AL⊥,−AR⊥
∗
) , (3.6b)

n3 = (AL0 , A
R
0
∗
) , (3.6c)

or in terms of helicity amplitudes

m1 =
1√
2

(n1 + n2) = (HL
+1, H

R
−1
∗
) , (3.7a)

m2 =
1√
2

(n1 − n2) = (HL
−1, H

R
+1
∗
) , (3.7b)

m3 = n3 = (HL
0 , H

R
0
∗
) . (3.7c)

In fact, all the information of the angular distribution is encoded in the moduli of the three

ni vectors and their relative complex scalar products:

|n1|2 =
2

3
J1s − J3 , |n2|2 =

2

3
J1s + J3 , |n3|2 = J1c , (3.8)

∗Any program able to handle symbolic algebra will be able to show this.
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n1 · n2 =
J6s

2
− iJ9 , n1 · n3 =

√
2J4 − i

J7√
2
, n2 · n3 =

J5√
2
− i
√

2J8 , (3.9)

where ni being a complex vector implies that the scalar product is ni · nj =
∑

k nikn
∗
jk

.

The coefficients J2s and J2c are absent because they are obviously redundant.

The differential distribution is invariant under the following four independent symme-

try transformations of the amplitudes

n
′
i =

[
eiφL 0

0 e−iφR

][
cos θ − sin θ

sin θ cos θ

][
cosh iθ̃ − sinh iθ̃

− sinh iθ̃ cosh iθ̃

]
ni , (3.10)

where φL, φR, θ and θ̃ can be varied independently. Identical transformations can be

carried out on the mi. Normally, there is the freedom to pick a single global phase, but as

L and R amplitudes do not interfere here, two phases can be chosen arbitrarily as reflected

in the first transformation matrix.

The interpretation of the third and fourth symmetry is that they transform a helicity

+1 final state with a left handed current into a helicity −1 state with a right handed

current. As we experimentally cannot measure the simultaneous change of helicity and

handedness of the current, these transformations turn into symmetries for the differential

decay rate.

3.3 Relationship between coefficients in differential distribution

As was mentioned earlier, we have identified an extra dependency among the coefficients

in the massless case. Here we outline how it can be derived.

If we use the two global phase symmetry transformations we can rotate the vector n1

to make it real (AL‖ and AR‖ become real).† We can then choose the angle θ of the third

symmetry to make AL‖ = 0. Notice that we have not made use of the fourth symmetry.

The implications of this fourth symmetry will become manifest when solving the system.

With these choices

n1 = (0, AR‖ ) , (3.11)

where AR‖ is a positive real parameter. Using three of Eqs. (3.8)-(3.9) together with the

symmetries, one can determine four of the spin amplitudes (their moduli and phases):

AL‖ = 0 , (3.12a)

AR‖ =
√
|n1|2 =

√
2

3
J1s − J3 , (3.12b)

AR⊥ = − n1.n2√
|n1|2

= − (J6s − 2iJ9)

2
√

2
3J1s − J3

, (3.12c)

AR0 =
n1.n3√
|n1|2

=
2J4 − iJ7√
4
3J1s − 2J3

. (3.12d)

†Indeed the system can also be solved using only one of the two global symmetries and keep AR
‖ complex.
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The remaining three equations from Eqs. (3.8)-(3.9) determine, on one side, the moduli of

AL⊥ and AL0 :

|AL⊥|2 = |n2|2 −
|(n1.n2)|2

|n1|2
=

4
9J

2
1s − J2

3 − 1
4J

2
6s − J2

9
2
3J1s − J3

, (3.13a)

|AL0 |2 = |n3|2 −
|(n1.n3)|2

|n1|2
=
J1c

(
2
3J1s − J3

)
− 2J2

4 − 1
2J

2
7

2
3J1s − J3

, (3.13b)

and on the other, the phase difference corresponding to the previous two amplitudes:

ei(φ
L
⊥−φ

L
0 ) =

(n2 · n3)|n1|2 − (n2 · n1)(n1 · n3)

([|n1|2|n2|2 − |(n2 · n1)|2) (|n1|2|n3|2 − |(n3 · n1)|2)]1/2

=
J5

(
2
3J1s − J3

)
− J4J6s − J7J9 − i

(
4
3J1sJ8 − 2J3J8 + 2J4J9 − 1

2J6sJ7

)[
2
(

4
9J

2
1s − J2

3 − 1
4J

2
6s − J2

9

) (
J1c

(
2
3J1s − J3

)
− 2J2

4 − 1
2J

2
7

)]1/2 .

(3.14)

Here is where the fourth symmetry becomes manifest. On one side, this equation tell us

that you have the freedom to choose one of the two phases φL⊥ or φL0 to zero. On the other

side, given that the LHS of the previous equation is a pure phase, the modulus of the RHS

should be one. This implies the following important non-trivial relationship between the

coefficients of the distribution

J1c = 6
(2J1s + 3J3)

(
4J2

4 + J2
7

)
+ (2J1s − 3J3)

(
J2

5 + 4J2
8

)
16Js 2

1 − 9
(
4J2

3 + Js 2
6 + 4J2

9

)
− 36

J6s(J4J5 + J7J8) + J9(J5J7 − 4J4J8)

16J2
1s − 9

(
4J2

3 + J2
6s + 4J2

9

) . (3.15)

It is important to remark that this relationship is present in the massless case with and

without scalars and the massive case with no scalars. The only situation when it is not

fulfilled is for the massive leptons with scalars.

3.4 Experimental issues

The symmetries discussed above can be used to fix the spin-amplitude components by

choosing specific values of the relevant rotation angles. We give an explicit example of

this for the case where the lepton mass is neglected. We choose to make the following

constraint:

Re(AL‖ ) = Im(AL‖ ) = Im(AR‖ ) = Im(AL⊥) = 0. (3.16)

This can be achieved by first performing the last transformation, shown in Eq. (3.10),

with the value of θ̃ given by:

sin θ̃ =

√
z − 1

2z
, cos θ̃ =

√
z + 1

2z
, (3.17)

where

z =

√√√√1 + 4

[
Re(AL‖ )Im(AR‖ ) + Re(AR‖ )Im(AL‖ )

Re(AR‖ )2 + Im(AR‖ )2 − Re(AL‖ )2 − Im(AL‖ )2

]2

. (3.18)
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Next, the third rotation angle, θ, is used again in Eq. (3.10):

tan θ =

√
1 + zRe(AL‖ )−

√
z − 1 Im(AR‖ )

√
1 + zRe(AR‖ ) +

√
z − 1 Im(AL‖ )

. (3.19)

the L-fields are phase shifted by φL:

tanφL = −
cos θ̃[cos θ Im(AL⊥)− sin θ Im(AR⊥)] + sin θ̃[cos θ Re(AR⊥) + sin θ Re(AL⊥)]

sin θ̃[cos θ Im(AR⊥)− sin θ Im(AL⊥)] + cos θ̃[cos θ Re(AL⊥) + sin θ Re(AR⊥)]
,

(3.20)

and finally the last R-field transformation can be performed by substituting (⊥→ ‖) and

(L↔ R) into the previous expression:

tanφR = −
cos θ̃[cos θ Im(AR‖ )− sin θ Im(AL‖ )] + sin θ̃[cos θ Re(AL‖ ) + sin θ Re(AR‖ )]

sin θ̃[cos θ Im(AL‖ )− sin θ Im(AR‖ )] + cos θ̃[cos θ Re(AR‖ ) + sin θ Re(AL‖ )]
.

(3.21)

3.5 Constructing observables

In [4, 6], as well as here, we use the spin amplitudes to construct our observables. There are

two main advantages of this approach, one is experimental and the other is theoretical. On

the experimental side, we have found that fitting directly the angular coefficients Ji, without

taking into account the relations between them, leads to fit instabilities. These relations,

coming from the underlying K∗0 spin amplitudes, can be found in Sec. 3.3. The theoretical

argument has to do with our aim at constructing observables that fulfil certain criteria,

namely maximal sensitivity to a specific NP operator, like new right-handed currents, and

minimal sensitivity to poorly known form factors. Given that our main tools are directly

the spin amplitudes it is a straight-forward exercise to design observables with a specific

NP sensitivity and small hadronic uncertainties. We also have more freedom to construct

observables than just using each coefficient of the distribution as an observable. As the

spin amplitudes can be extracted directly in the full-angular analysis, there is no penalty

on the final experimental uncertainty from using a non-trivial functional form to make the

observable.

The symmetries of the angular distribution play a crucial role in our approach. Once a

quantity has been designed, it is a necessary condition for being an observable based on the

angular distribution that it respects all the symmetries of this distribution. For example

in [6], we have explicitly shown that a previously discussed transversity amplitude A
(1)
T does

not fulfil all the symmetries of the angular distribution. This implies that this quantity

cannot be measured at the LHCb experiment or at future super-B factory experiments; a

measurement of the spins of the final-state particles would be required for that.

Let us finally discuss a new CP -conserving observable that we call A
(5)
T . It is defined

as:

A
(5)
T =

∣∣AL⊥AR‖ ∗ +AR⊥
∗
AL‖
∣∣∣∣AL⊥∣∣2 +

∣∣AR⊥∣∣2 +
∣∣AL‖ ∣∣2 +

∣∣AR‖ ∣∣2 . (3.22)
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It probes the transverse spin amplitudes A⊥ and A‖ in a different way than A
(2)
T . Direct

inspection of Eq. (2.4) shows that there is no single angular coefficient mixing L with R

and ⊥ with ‖ simultaneously in the way A
(5)
T does.

It is a simple exercise to check that this observable fulfils the four symmetries described

in Eq. (3.10). Once this invariance is fulfilled‡ one is allowed to use the explicit solution in

the massless case provided in the previous subsection Eqs. (3.8)-(3.9):

A
(5)
T

∣∣∣
m`=0

=

√
16Js 2

1 − 9Js 2
6 − 36(J2

3 + J2
9 )

8Js1
. (3.23)

A discussion on the properties and sensitivities of this observable is presented in Sec. 6.

3.6 More general cases

The discussion of the differential symmetries from Sec. 3.1 can be generalised to the cases

where the leptons are no longer considered massless and where a scalar amplitude is in-

cluded:

Massless leptons with scalars The inclusion of the scalar amplitude AS , gives us seven

amplitudes. The four explicit symmetries in Eq. (3.10) are still valid and we have in

addition

A
′
S = eiφSAS , (3.24)

expressing that the phase of AS cannot be determined.

Massive leptons without scalars We have the seven amplitudes AL,R⊥ , AL,R‖ , AL,R0 and

At in this case and still eleven coefficients. As a fact of elementary quantum mechanics

we still have a global phase transformation corresponding to φL = φR, but the other

two symmetries from the massless case are no longer valid. There is a new symmetry

concerning the phase of At given as:

A
′
t = eiφtAt . (3.25)

This leaves us with two symmetries where only the differential form is known.

Massive leptons with scalars We now have all eight amplitudes and, with the inclusion

of J6c, we have twelve coefficients. The global phase transformation, φL = φR, and

the phase transformation of At in Eq. (3.25) are still valid. In this case, there is no

dependency between any of the coefficients, leaving us with two symmetries where

only the differential form is known.

So while we in some cases only know the differential form of the symmetries, we are still

able to test if observables respect the symmetries (see Sec 3.5) and we can also determine

the optimal set of amplitudes to fit for in an experimental fit (see Sec. 3.4). In Tab. 1 we

summarise the full knowledge about the symmetries.

‡Notice that the quantity A
(1)
T could also be written in terms of the Ji using the explicit solution, but

this is not allowed since A
(1)
T is not invariant [6].
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Case Coefficients Dependencies Amplitudes Symmetries

m` = 0, AS = 0 11 3 6 4

m` = 0 11 2 7 5

m` > 0, AS = 0 11 1 7 4

m` > 0 12 0 8 4

Table 1: The dependencies between the coefficients in the differential distribution and the sym-

metries between the amplitudes in several special cases.

4. Experimental Sensitivities

In [6], a fitting technique was investigated that allowed the extraction of the K∗0 spin

amplitudes from the full angular distribution in the massless lepton limit. Eq. (2.1) can

be interpreted as a probability density function (PDF) and normalised numerically. We

parametrise it in terms of six complex K∗0 spin amplitudes, which are functions of q2 only.

In the limit of infinite experimental data, and for a fixed value of q2, these amplitudes can

be found by fitting the relative contribution of each angular coefficient as a function of the

three decay angles. As discussed in Sec. 3, the symmetries of the distribution can then be

used to reduce the number of unknowns; if we consider the real and imaginary amplitude

components separately, the twelve parameters can be reduced to eight using the symmetry

constraints. A further spin-amplitude component may be removed by noting that Eq. (2.1)

is only sensitive to relative normalisations. This leaves seven free parameters at each point

in q2. However, in [6], only three, out of four, symmetry constraints were considered

meaning that, in principle, the fits presented were under-constrained. The implications of

this will be investigated in this section.

Despite the large increases in Bd → K∗0µ+µ− statistics expected at LHCb, the number

of signal events available will still be too small for a fixed q2 approach to be taken. Instead,

the spin-amplitude components are parametrised as second-order polynomials in the region

q2 ∈ [1, 6] GeV2. These are normalised relative to the value of Re(AL0 ) at a fixed value, X0,

of q2. Rather than fitting directly for the amplitudes, we aim to extract the coefficients

of these polynomials. This introduces a number of model biases: the underlying spin

amplitudes are assumed to the smoothly varying in the q2 window considered. As noted

in [6], this was verified for a number of NP models. There is also an implicit assumption

that the q2-dependent shape of the spin amplitudes is invariant under the symmetries

of the angular distribution. Neglecting background parameters, the q2-dependent fit has

((12− 4)× 3)− 1 = 23 free parameters to be extracted, or 26 in [6]. These will be labelled

the four- and three-symmetry fits respectively.

The three-symmetry fit although, in principle, under-constrained is able to converge

due to the polynomial parametrisation employed. By requiring that three of the spin

amplitude components vanish for all values of q2, we have used our freedom to choose

values of φL, φR, and θ from Eq. (3.10) at each point in q2; the value of θ̃ is still free to

vary. However, the PDF, Eq. (2.1), is invariant under changes of θ̃; hence, the negative

log-likelihood (NLL) used during minimisation should not be sensitive to its value. The q2
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dependent shape of each amplitude component is manifestly not invariant under changes

in θ̃ – the rotation it implies mixes the imaginary parts of the left- and right-handed

amplitudes. The polynomial parametrisation of the spin-amplitude components requires

that each amplitude must be smoothly varying. The fit then selects the value of θ̃ for each

signal event which produces the most polynomial-like distribution, as this will have the

smallest NLL. The general minimising algorithm employed is then able to find a genuine

minimum and converge properly; the imposition of the polynomial ansatz allowed the

under-constrained fit of [6] to converge properly. As the experimental observables are

invariant under all four symmetries, their q2 dependent distributions can be found correctly;

there are no significant biases seen in the central values extracted compared to the input

distribution. Small biases are seen in the individual spin-amplitude components; with

hindsight, correlations between these components were induced by the presence of the

fourth symmetry.

4.1 Experimental Analysis

The experimental sensitivity to different observables can be estimated using a toy Monte

Carlo (MC) approach.

4.1.1 Generation

An ensemble of data sets for Bd → K∗0µ+µ− can be generated; each data set contains

the Poisson fluctuated number of signal and background events expected after LHCb has

collected 10 fb−1 of integrated luminosity. Estimates of the signal and background yields

were taken from [17, 18] and scaled linearly. The signal distribution was generated using the

K∗0 spin amplitudes discussed in Sec. 2 as input. The contribution from terms including

the muon mass were included. No assumption of polynomial variation of the amplitudes

was assumed for the generation. The signal is assumed to have a Gaussian distribution in

mB with a width of 14 MeV in a window of mB ± 50 MeV and a Breit-Wigner in mKπ with

width 48 MeV in a window of mK∗0±100 MeV. A simplified background model is included;

it is flat in all decay angles, effectively treating all background as combinatorial, but follows

the q2 distribution of the signal. Detector acceptance effects as described in [17] are not

taken into account. When considering CP -conserving quantities, the B and B samples

are simply considered together. We do not include any contributions from non-resonant

Bd → K−π+µ+µ−.

4.1.2 Observable sensitivities

The ensemble of simulated data sets can then be used to estimate the experimental un-

certainties expected for a given integrated luminosity at LHCb. For each data set, the full

angular fit was performed to find the most likely value for each of the free parameters for

that data set. For the three-symmetry fit there were 27 free parameters; 26 for the signal

distribution and one to describe the level of background seen. For the four-symmetry fit,

only 24 parameters were required. In total we created an ensemble of 1200 experiments

and will, thus, at a given value of q2, get 1200 different determinations of each observable.

By looking at the point where 33% and 47.5% of results lie within either side of the median
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of the results we can form asymmetric 1σ and 2σ errors. Connecting these at different q2

values gives us 1σ and 2σ bands for the experimental errors on the observable.

4.1.3 CP asymmetries

The sensitivity to various CP asymmetries was also considered. In this case, separate B

and B samples were generated and fit independently. Each sample had on average half the

number of signal and background events as those described in Sec. 4.1.1. The results of a

B and a B fit could then be combined by re-normalising the B amplitudes found, so that

the extracted value of Re(AL0 ) at X0 was the same in both samples. This gives sensitivity

to CP asymmetries relative to this point. By considering many B and B samples together,

estimates of the experimental sensitivity to the CP asymmetries could then be found.

In a real measurement, a more sophisticated approach would be taken which considered

the two samples simultaneously; however, our simplified approach gives a reasonable first

estimate of the experimental sensitivities obtainable and allow comparison with theoretical

requirements.

4.2 The polynomial ansatz re-examined

A key assumption of the fitting approach taken in [6] is that the spin-amplitude components

are smoothly varying functions in the range q2 ∈ [1, 6] GeV2. It was found that when all four

symmetries of the massless angular distribution are taken into account, this assumption

no longer holds; indeed the shape of the spin-amplitude components is not invariant under

the four symmetries and their shape can be distorted so they are no longer well described

by second-order polynomials. Consider the three-symmetry case at a fixed q2 value: in [6],

AR0 is removed by setting θ = arctan(−AR0 /AL0 ) once their phases have been rotated away.

This can be understood by substituting the trigonometric identities,

sin(arctan(θ)) =
θ√

1 + θ2
, cos(arctan(θ)) =

1√
1 + θ2

. (4.1)

into Eq. (3.10). This introduces a [1 + (AR0
2
/AL0

2
)]−

1
2 term into each non-zero amplitude

component, which will not be well behaved as AL0 → 0. For the three-symmetry fit, these

problems can be avoided by taking Re(AL0 ) as the reference amplitude component, forcing

it to be relatively large at X0. However, to include the fourth symmetry constraint, a more

complicated form must be used in order to set four amplitude components simultaneously.

A different value of each of the four rotation angles is required for every point in q2 due

to the changing spin amplitudes. There is no guarantee that a set of rotation angles can

be found such that the unfixed spin-amplitude components resemble smoothly varying

polynomials for all q2. The q2 dependence of the SM input amplitude Re(AL0 ) is shown

in Fig. 1 once the four symmetries have been applied to fix Im(AL‖ ), Im(AR‖ ), Re(AL‖ ),

and Im(AL⊥) to zero, as required for in the next section. This particular feature is caused

by Re(AL‖ ) → 0 at q2 ≈ 2 GeV2; other rotation choices lead to similar features. The

distribution can no longer be well described by a second-order polynomial. It may be

possible to find a choice of rotation parameters that preserve the polynomial features of

the input spin-amplitude components, however, there are no guarantee that a particular

– 17 –



choice would work when faced with experimental data. Indeed, an incorrect choice will

lead to biases in the case where the parametrisation is a poor match for the underlying

amplitudes. A more generic solution is required and could form the basis for further

investigations.

4.3 Fit Quality

)2 (GeV2q
1 2 3 4 5 6

)
0L

Im
(A

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 1: The q2 dependence of Re(AL0 ) after

using the four symmetries of the full-angular dis-

tribution to fix Im(AL‖ ), Im(AR‖ ), Re(AL‖ ), and

Im(AL⊥) to zero.

The effect of adding the fourth symmetry

constraint was tested, by comparing ensem-

bles of three- and four-symmetry fits. The

two ensembles were generated with the same

random seed values so that the ensemble of

input data sets was the same for the two

approaches. The fixed spin-amplitude com-

ponents were chosen to be Im(AL‖ ), Im(AR‖ ),

Re(AL‖ ), and in the case of the four symme-

try fit also Im(AL⊥). The amplitudes were

still normalised relative to Re(AL‖ ) at X0 =

3.5 GeV2, however the fits were performed

in the range q2 ∈ [2.5, 6] GeV2 to avoid the

non-polynomial features seen in the spin-

amplitude components, such as shown in Fig. 1.

The sensitivities found for the angular observables are poorer than those presented

in [6], due to the decreased signal statistics in the reduced q2 window, however, it is

interesting to compare the performance of the two fitting methods. A histogram of the

NLL of each fit is shown in Fig. 2. The ensemble of three-symmetry fits (hatched) and four-

symmetry fits (solid) can be seen. The ensemble of input data sets is slightly different in

each case due to a small number of failed computing jobs, but the output distributions look

very similar. This shows that the depth of the minima found is approximately the same

for the three- and four-symmetry fits. We can also introduce a global correlation factor

GC , which is the unsigned mean of the individual global correlation coefficients calculated

from the full covariance matrix. It takes values in the range GC ∈ [0, 1], where zero shows

all variables as completely uncorrelated, and one shows total fit correlation. It can be seen

in Fig. 3 that the mean correlation of the fit is reduced once the fourth symmetry is taken

into account. There are less outliers at very low GC and the distribution appears more

Gaussian, indicating an increase in fit stability has been achieved. The convergence of the

fit starting from arbitrary initial parameters has also much improved.

Fig. 4 shows the estimated experimental sensitivities found for the theoretically clean

observable A
(3)
T in the range q2 ∈ [2.5, 6] GeV2, with and without the fourth symmetry

constraint. The fits are for 10 fb−1 of LHCb integrated luminosity assuming the SM. As

might be expected from Fig. 2, there is little difference in the estimated experimental

resolutions seen. The same conclusion is reached when inspecting other observables.
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Figure 2: The negative log–likelihood factor

for the three-symmetry (blue hatched) and

four-symmetry (red solid) ensembles of fits to

10 fb−1 toy data sets of LHCb data, assuming

the SM and with q2 ∈ [2.5, 6] GeV2.

Figure 3: The global correlation factor for

the three-symmetry and four-symmetry en-

sembles of fits to 10 fb−1 toy data sets of

LHCb data, assuming the SM and with q2 ∈
[2.5, 6] GeV2. The colour scheme is the same

as in Fig. 2.
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Figure 4: One and two σ contours of estimated experimental sensitivity to the theoretically clean

observable A
(3)
T with full-angular fit to 10 fb−1 of LHCb data assuming the SM. The results of the

three-symmetry fit are shown on the left, and the four-symmetry fit on the right. The fits were

performed in the range q2 ∈ [2.5, 6] GeV2.

4.4 Discussion

The discovery of a fourth symmetry in the massless leptons limit of the full-angular dis-

tribution of Bd → K∗0µ+µ− requires that the experimental analysis proposed in [6] be

re-evaluated. The previous analysis used three of the four available symmetry constraints

to perform a fit, that was, in principle, under-constrained, by parametrising the real and

imaginary parts of the K∗0 spin amplitudes as second-order polynomials. The invariance

of the observables under all four symmetries, and the freedom to take arbitrary values of

the θ̃ rotation angle, allowed the fits to converge and produce correct output, but intro-

duced a subtle parametrising bias. As the observables are by definition invariant to all the

symmetries, the estimated experimental sensitivities are the same for the two methods.
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5. Analysis of CP -violating observables

In [10, 19], it was shown that eight CP -violating observables can be constructed by com-

bining the differential decay rates of dΓ(Bd → K∗0`+`−) and dΓ(Bd → K∗0`+`−). In this

section we analyse the theoretical and experimental uncertainties of those observables in

order to judge the NP sensitivity of such CP -violating observables.

5.1 Preliminaries

The corresponding decay rate for the CP -conjugated decay mode Bd → K∗0`+`− is given

by
d4Γ

dq2 d cos θl d cos θK dφ
=

9

32π
J̄(q2, θl, θK , φ) . (5.1)

As shown in [10], the corresponding functions J̄i(q
2, θl, θK , φ) are connected to functions

Ji in the following way:

J1,2,3,4,7 → J̄1,2,3,4,7, J5,6,8,9 → −J̄5,6,8,9 , (5.2)

where J̄i equals Ji with all weak phases conjugated.

Besides the CP asymmetry in the dilepton mass distribution, there are several CP -

violating observables in the angular distribution. The latter are sensitive to CP -violating

effects as differences between the angular coefficient functions, Ji − J̄i. As was discussed

in [10, 19], and more recently in [9], those CP asymmetries are all very small in the SM;

they originate from the small CP -violating imaginary part of λu = (VubV
∗
us)/(VtbV

∗
ts). This

weak phase present in the Wilson coefficient C(eff)
9 is doubly-Cabibbo suppressed and further

suppressed by the ratio of the Wilson coefficients (3C1 + C2)/C9 ≈ 0.085.

Moreover, it is important to note [19, 9] that the CP asymmetries corresponding to

J7,8,9 are odd under the transformation φ→ −φ and thus, these asymmetries are T-odd (T

transformation reverses all particle momenta and particle spins) while the other angular

CP asymmetries are T-even. T-odd CP asymmetries are favoured because they involve

the combination cos(δθ) sin(δφW ) of the strong and weak phase differences [19, 9], thus,

they are still large in spite of small strong phases as predicted for example within the

QCDF/SCET approach. In contrast, T-even CP asymmetries involve the combination to

sin(δθ) cos(δφW ) [19, 9]§.

Another remark is that the CP asymmetries related to J5,6,8,9 can be extracted from

(dΓ + dΓ) due to the property Eq. (5.2), and thus can be determined for an untagged

equal mixture of B and Bd mesons. This is important for the decay modes B0
d → K∗0(→

K0π0)`+`− and Bs → φ(→ K+K−)`+`− but it is less relevant for the self-tagging mode

Bd → K∗0(→ K+π−)`+`−.

Recently, a QCDf/SCET analysis of the angular CP -violating observables, based on

the NLO results in [13, 14], was presented for the first time [9]. The NLO corrections are

§We note here that this specific behaviour of T-odd and T-even observables was shown in many examples

of T-odd CP asymmetries (see [20] and references therein) but a general proof of this statement is still

missing to our knowledge.
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shown to be sizable. The crucial impact of the NLO analysis is that the scale dependence

gets reduced to the 10% level for most of the CP asymmetries. However, for some of them,

which essentially start with a nontrivial NLO contribution, there is a significantly larger

scale dependence. The q2-integrated SM predictions are all shown to be below the 10−2

level due to the small weak phase as mentioned above. The uncertainties due to the form

factors, the scale dependence, and the uncertainty due to CKM parameters are identified

as the main sources of SM errors [9].

5.2 Phenomenological analysis

The NP sensitivity of CP -violating observables in the mode Bd → K∗0`+`− was discussed

in a model-independent way [9] and also in various popular concrete NP models [7]. It was

found that the NP contributions to the phases of the Wilson coefficients C7, C9, and C10

and of their chiral counterparts drastically enhance such CP -violating observables, while

presently most of those phases are very weakly constrained. It was claimed that these

observables offer clean signals of NP contributions.

However, the NP reach of such observables can only be judged with a complete analysis

of the theoretical and experimental uncertainties. To the very detailed analyses in [9, 7]

we add the following points:

• We redefine the various CP asymmetries following the general method presented in

our previous paper [6]: an appropriate normalisation of the CP asymmetries almost

eliminates any uncertainties due to the soft form factors which is one of the major

sources of errors in the SM prediction.

• We explore the effect of the possible Λ/mb corrections and make the uncertainty due

to those unknown Λ/mb corrections manifest in our analysis within the SM and NP

scenarios.

• We investigate the experimental sensitivity of the angular CP asymmetries using a

toy Monte Carlo model and estimate the statistical uncertainty of the observables

with statistics corresponding to five years of nominal running at LHCb (10 fb−1) using

a full angular fit method.

We discuss these issues by example of the two angular asymmetries corresponding to the

angular coefficient functions J6s and J8;

A6s =
J6s − J̄6s

d(Γ + Γ)/dq2
, A8 =

J8 − J̄8

d(Γ + Γ)/dq2
. (5.3)

Within the SM the first CP asymmetry related to J6s turns out to be the well-known

forward-backward CP asymmetry which was proposed in [21, 22].

As a first step we redefine the two CP observables. We make sure that the form factor

dependence cancels out at the LO level by using an appropriate normalisation:

AV 2s
6s =

J6s − J̄6s

J2s + J̄2s
, AV8 =

J8 − J̄8

J8 + J̄8
. (5.4)
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The Ji are bilinear in the K∗ spin amplitudes, so it is clear from the LO formulae Eq. (2.6)

that, following the strategy of [6], any form factor dependence at this order cancels out

in both observables. We note that J2s has the same form factor dependence as J6s but

has larger absolute values over the dilepton mass spectrum that stabilises the quantity. In

Fig. 5 the uncertainty due to the form factor dependence is estimated in a conservative way

(see Appendix B) for A6s defined in Eq. (5.3) and for AV6s defined in Eq. (5.4). Comparing

the plots, one sees that with the appropriate normalisation, this main source of hadronic

uncertainties gets almost eliminated. The leftover uncertainty enters through the form

factor dependence of the NLO contribution. Fig. 6 shows the analogous results for the

observable AV8 .
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Figure 5: SM prediction of the CP -violating observables A6s (left) and AV 2s
6s (right) as function

of the squared lepton mass with uncertainty due to the soft form factors only. Notice the difference

in scale and the difference in relative error in the two figures.
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Figure 6: SM prediction of the CP -violating observables A8 (left) and AV8 (right) with uncertainty

due to the soft form factors only. Notice the difference in scale of the two figures.

In the second step we make the possible Λ/mb corrections manifest in our final re-

sults by using the procedure described in Sec. 2.3. It turns out that in spite of this very

conservative ansatz for the possible power corrections, we neglect for example any kind of

correlations between such corrections in the various spin amplitudes; the impact of those

corrections is smaller than the SM uncertainty in case of the two observables AV6s and AV8 .

In the left plot of Fig. 7 the SM error is given, including uncertainties due to the scale
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Figure 7: SM uncertainty in AV 2s
6s (left) and estimate of uncertainty due to Λ/mb corrections with

C1,2 = 10% (right).
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Figure 8: SM uncertainty in AV8 (left) and estimate of uncertainty due to Λ/mb corrections (right,

light grey (green) corresponds to C1,2 = 5%, dark grey (green) to C1,2 = 10%).

dependence and input parameters and the spurious error due to the form factors. In the

right plot the estimated power corrections are given, which in case of the CP -violating

observable AV6s are significantly smaller than the combined uncertainty due to scale and

input parameters. Fig. 8 shows the same feature for the CP -violating observable AV8 . This

result is in contrast to the one for CP -averaged angular observables discussed in [6], where

the estimated power corrections always represent the dominant error. The reason for this

specific feature is the smallness of the weak phase in the SM. Thus, one expects that the

impact of power corrections will be significantly larger when NP scenarios with new CP

phases are considered (see below).

In the third step we consider various NP scenarios. Here we follow the model-independent

constraints derived in [9] assuming only one NP Wilson coefficient being nonzero. We con-

sider three different NP benchmarks scenarios of this kind:

1. |CNP
9 | = 2 and φNP

9 = π
8 ,

π
2 , π (Red);

2. |CNP
10 | = 1.5 and φNP

10 = π
8 ,

π
2 , π (Grey);

3. |C′10| = 3 and φ
′
10 = π

8 ,
π
2 , π (Blue);
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where the colours refer to the ones used in the following figures. The absolute values

of the Wilson coefficients are chosen in such a way that the model-independent analysis,

assuming one nontrivial NP Wilson coefficient acting at a time, does not give any bound

on the corresponding NP phase.
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Figure 9: NP scenarios, assuming one nontrivial NP Wilson coefficient at a time, next to SM

prediction for AV 2s
6s (left) and AV8 (right), for concrete values see text.

Fig. 9 shows our two observables in the three scenarios with the phase value π
8 : the

CP -violating observable AV6s might separate a NP scenario (2), while the central values of

scenarios (1) and (3) are very close to the SM. Moreover observable AV8 seems to be suited

to separate scenarios (1) and (3) from the SM.

However, to judge the NP reach we need a complete error analysis within the three

NP scenarios. As shown in Sec. 2.3 we now work with three weak sub-amplitudes in which

possible power corrections are varied independently. The plots in Figs. 10 and 11 show

that the possible Λ/mb corrections have a much larger impact on our two observables

in the NP scenarios than in the SM and become the dominating theoretical uncertainty.

We also get significantly larger possible Λ/mb corrections when changing the value of the

new weak phase from π
8 to π

2 . Regarding even larger phase values, we note here that the

NP effects drastically decrease again when phase values around π are chosen as expected.

Nevertheless, in view of the theoretical Λ/mb uncertainties only, the two CP -violating

observables could discriminate some specific NP scenarios with new CP phase of order π
8

or π
2 from the SM; in case of AV 2s

6s NP scenario 2, in case of AV8 NP scenario 3 and possibly

1.

One should also consider the additional theoretical uncertainties due to scale depen-

dence, input parameters and soft form factor dependencies within the NP scenarios. Those

additional theoretical uncertainties are sizable and of the same order as the ones due to

Λ/mb corrections: they are shown in the left plots in Figs. 12 and 13 as orange bands

overlaying the total errors bars including also the Λ/mb corrections.

As the last step, we analyse the experimental sensitivity of the angular CP asymmetries

using a toy Monte Carlo model. The right plots in Figs. 12 and 13 show the estimates of

the statistical uncertainty of AV6s and AV8 with statistics corresponding to five years of

nominal running at LHCb (10 fb−1). The inner and outer bands correspond to 1σ and 2σ

statistical errors. The plots show that all the NP benchmarks are within the 1σ range of the
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Figure 10: AV 2s
6s : Estimate of uncertainty due to Λ/mb corrections within NP scenarios as in

previous figure with phases φi = π
8 (left) and φi = π

2 (right).
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Figure 11: AV8 : Estimate of uncertainty due to Λ/mb corrections within NP scenarios as in

previous figure with phases φi = π
8 (left) and φi = π

2 (right).
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Figure 12: AV 2s
6s : Estimate of uncertainty due to Λ/mb corrections (grey bands) in NP scenario

2, |CNP
10 | = 1.5 and φNP

10 = π
2 with the other theoretical uncertainties overlaid (orange bands) and in

SM (left) and experimental uncertainty (right).

expected experimental error in case of the observable AV6s, and within the 2σ range of the

experimental error in case of the observable AV8 . We emphasise that from the experimental

point of view the normalisation is not important when calculating the overall significance

because the overall error is dominated by the error on the numerator. So the experimental
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Figure 13: AV8 : Estimate of uncertainty due to Λ/mb corrections in NP scenarios 1 ( |CNP
9 | = 2,

φNP
9 = π

2 , red bands) and 3 (|C′

10| = 3, φ
′

10 = π
2 , blue bands) with the other theoretical uncertainties

overlaid (orange bands) and in SM (left) and experimental uncertainty (right).

error of the observables A6s and A8 defined in Eq. (5.3) using the traditional normalisation

will be similarly large to the one of our new observables AV6s and AV8 defined in Eq. (5.4).

Our final conclusion is that the possibility to disentangle different NP scenarios for

the CP -violating observables remains rather difficult. For the rare decay Bd → K∗0`+`−,

LHCb has no real sensitivity for NP phases up to values of π
2 (and neither up to values

of π) in the Wilson coefficients C9, C10 and their chiral counterparts. Even Super-LHCb

with 100 fb−1 integrated luminosity does not improve the situation significantly. This is

in contrast to the CP -conserving observables presented in [6] and further discussed in the

next chapter which, both from the theoretical and experimental point of view, are very

promising.

6. Analysis of CP -conserving observables

The CP -conserving observables can be analysed at LO in the large recoil limit using the

heavy-quark and large-EK∗ expressions for the spin amplitudes, as first proposed in [4].

One of the advantages of this approach is that we obtain analytic expressions of these

observables in a very simple way. These expressions can be used to study the behaviour of

the observables without having to rely on numerical computations, since the most relevant

features arise already at LO. The main goal of this section is to perform this type of analysis

on the A
(i)
T observables.

6.1 Leading-order expressions of A
(2)
T

The asymmetry A
(2)
T , first proposed in [4] is given by

A
(2)
T =

|A⊥|2 − |A‖|2

|A⊥|2 + |A‖|2
, (6.1)

where |Ai|2 = |ALi |2+|ARi |2. It has a simple form, free from ξ⊥(0) form factor dependencies,
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in the heavy-quark (mB →∞) and large K∗0 energy (EK∗ →∞) limits¶:

A
(2)
T =

2
[
Re
(
C′10C∗10

)
+ F 2Re

(
C′7C∗7

)
+ FRe

(
C′7C∗9

)]
|C10|2 + |C′10|2 + F 2(|C7|2 + |C′7|2) + |C9|2 + 2FRe (C7C∗9)

, (6.2)

where F ≡ 2mbmB/q
2. The Wilson coefficients can take the most general form:

Ci = CSMi + |CNP
i |eiφ

NP
i , C′i = |C′i|eiφ

′
i , i = 7, 9, 10. (6.3)

We will neglect henceforward both the tiny SM weak phase φSM
9 , that arises from the

CKM elements ratio λu = (VubV
∗
us)/(VtbV

∗
ts), and the SM strong phase θSM9 , smaller than

1o in the low dilepton mass region 1 GeV2 6 q2 6 6 GeV2 [22].

Obviously, the observable A
(2)
T vanishes in the heavy-quark and large K∗0 energy lim-

its at LO when all the Wilson coefficients are taken to be SM-like. This result can be

understood rather easily. The left-handed structure of weak interactions in the SM guar-

antees that, in these limits, the s quark created in the b → s transition will have helicity

h(s) = −1/2 in the massless limit (ms → 0) [23]. This s quark will combine with the

spectator quark d of the Bd to form the K∗0 meson with h(K∗0) = −1 or 0 (but not +1),

therefore H+ = 0 at quark level in the SM. Using Eq. (2.3), this translates into A⊥ = −A‖
at the quark level, which corresponds to A⊥ ' −A‖ at the hadron level [24, 25, 26].

The NP dependence ofA
(2)
T can be stud-
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Figure 14: A
(2)
T in the SM (green) and with NP

in C′

10 = 3ei
π
8 (blue), this value is allowed by

the model independent analysis of [9]. The in-

ner line corresponds to the central value of each

curve. The dark orange bands surrounding it are

the NLO results including all uncertainties (ex-

cept for Λ/mb) as explained in the text. Internal

light green/blue bands (barely visible) include the

estimated Λ/mb uncertainty at a ±5% level and

the external dark green/blue bands correspond to

a ±10% correction for each spin amplitude.

ied in a model independent way by switch-

ing on one Wilson coefficient each time and

keeping all the others at their SM values.

A simple inspection of Eq. (6.2) shows that

only the chirally flipped operators O′7 and

O′10 give a non-zero expression for A
(2)
T in

our approximation:

A
(2)
T

∣∣∣
7′

=
2F (FCSM7 + CSM9 )|C′7|cos(φ′7)

(CSM10 )2 + F 2|C′7|2 + (FCSM7 + CSM9 )2
,

(6.4)

and

A
(2)
T

∣∣∣
10′

=
2 CSM10 |C

′
10|cos(φ′10)

(CSM10 )2 + |C′10|2 + (FCSM7 + CSM9 )2
.

(6.5)

Equations. (6.5) and (6.4) show that A
(2)
T is

sensitive to both the modulus and the sign

of the Wilson coefficients C′7 and C′10. When

NP enters only C′10, the fact that C10 < 0

in the SM makes the observable negative

unless π
2 < |φ

′
10| < π, enabling us to distin-

guish the sign of this weak phase (Fig. 14). Likewise, if NP appears in C′7, A
(2)
T will display

a zero in the dilepton mass spectrum when FCSM7 + CSM9 = 0, which will coincide exactly
¶Notice that along this section we will drop the superscript “eff” that C7 and C9 should bear in order to

simplify the notation.
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with the zero of the observable AFB at LO [13]. As the zero is independent of C′7, all curves

with CSM7 should exhibit it at q2 ∼ 4 GeV2, but if there is also a NP contribution to C7, the

zero will be shifted either to higher or lower values of q2. In case of a sign flip affecting

C7, A
(2)
T would not have a zero at any value of q2, exactly as for AFB (see [27] for a recent

discussion of different mechanisms to achieve this). In fact, should NP enter both O7 and

O′7 simultaneously, Eq. (6.2) would imply

A
(2)
T

∣∣∣
7′, 7NP

∝ 2F
[
(FCSM7 + CSM9 )|C′7|cos(φ′7) + F |C′7||CNP

7 |cos(φ′7 − φNP
7 )
]

(6.6)

while

AFB

∣∣∣
7′, 7NP

∝ FCSM7 + CSM9 + F |CNP
7 |cos(φNP

7 ). (6.7)

The comparison of Eq. (6.6) with Eq. (6.7) can be used to explain the improved sensitivity

of A
(2)
T to certain types of NP versus that of AFB. The numerator of A

(2)
T exhibits sensitivity

to the weak phases φNP
7 and φ′7, having an interference term enhanced by the large factor F

(8 . F . 48 in the dilepton mass region studied), while AFB is only sensitive to φNP
7 . Thus,

a wider departure from the SM behaviour is to be expected in A
(2)
T when NP enters the

operators O7 and O′7. This is shown in Fig. 15 using three different scenarios, described in

the caption of Fig. 15, compatible with present experimental and theoretical constraints.

Therefore, we emphasise that A
(2)
T must be regarded as an improved version of AFB once

the full-angular analysis becomes possible.
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Figure 15: Observables A
(2)
T and AFB with NP curves for three allowed combinations of C7 and

C′

7 following the model independent analysis of [9]. The bands correspond to the SM and the

theoretical uncertainty as described in Fig 14. The cyan line (shown with the label a) corresponds

to (CNP
7 , C′

7) = (0.26e−i
7π
16 , 0.2eiπ), the brown line b to (0.07ei

3π
5 , 0.3ei

3π
5 ) and the magenta line c

to (0.03eiπ, 0.07).

6.2 Leading-order expressions of A
(5)
T

In the SM, we get in the heavy-quark and large-EK∗ limits at LO:

A
(5)
T

∣∣∣
SM

=

∣∣−(CSM10 )2 + (FCSM7 + CSM9 )2
∣∣

2 [(CSM10 )2 + (FCSM7 + CSM9 )2]
, (6.8)
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which sets the “wave-like” behaviour of A
(5)
T . At low q2, Eq. (6.8) can be used to check

that A
(5)
T

∣∣1 GeV2

SM
' 0.4. On the other hand, at the zero-point of A

(2)
T and AFB, A

(5)
T exhibits

an absolute maximum of magnitude A
(5)
T

∣∣4 GeV2

SM
' 0.5.
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Figure 16: A
(5)
T in the SM and with NP in C′

10 = 3ei
π
8 and CNP

9 = 2ei
π
8 (left) and in both C7 and

C′

7 Wilson coefficients (right). The cyan line (a) corresponds to (CNP
7 , C′

7) = (0.26e−i
7π
16 , 0.2eiπ), the

brown line (b) to (0.07ei
3π
5 , 0.3ei

3π
5 ) and the pink line (d) to (0.18e−i

π
2 , 0). The bands symbolise

the theoretical uncertainty as described in Fig. 14.

Any inclusion of NP in the Wilson coefficients C7, C9 and C10 will give rise to the

appearance of an extra term in the numerator (with respect to Eq. (6.8)) that will shift

the observable along the y-axis.

A
(5)
T

∣∣∣π/2
7NP

=

√
[−(CSM10 )2 + F 2|CNP

7 |2 + (FCSM7 + CSM9 )2]2 + 4 [FCSM10 |CNP
7 |]

2

2 [(CSM10 )2 + F 2|CNP
7 |2 + (FCSM7 + CSM9 )2]

, (6.9a)

A
(5)
T

∣∣∣π/2
9NP

=

√
[−(CSM10 )2 + |CNP

9 |2 + (FCSM7 + CSM9 )2]2 + 4 [CSM10 |CNP
9 |]

2

2 [(CSM10 )2 + |CNP
9 |2 + (FCSM7 + CSM9 )2]

, (6.9b)

A
(5)
T

∣∣∣π/2
10NP

=

√
[−(CSM10 )2 − |CNP

10 |2 + (FCSM7 + CSM9 )2]2 + 4 [|CNP
10 |(FCSM7 + CSM9 )]2

2 [(CSM10 )2 + |CNP
10 |2 + (FCSM7 + CSM9 )2]

. (6.9c)

In Eq. (6.9) we have chosen for simplicity the weak phase φNP
i = π/2 for i = 7, 9, 10, but

they turn out to be dominated by the SM contribution unless the NP Wilson coefficients are

very large. However, if the weak phases associated to NP Wilson coefficients are different

from π/2, the A
(5)
T curve will get shifted either to the left or to the right, depending on the

value of the angle, as shown in Fig. 16.

NP might also enter via the chirally flipped O′7 and O′10. The corresponding LO

expressions of A
(5)
T in the heavy-quark and high-EK∗ limits read

A
(5)
T

∣∣∣
7′

=

∣∣∣−(CSM10 )2 + (FCSM7 + CSM9 )2 − F 2|C′7|2
∣∣∣

2
[
(CSM10 )2 + (FCSM7 + CSM9 )2 + F 2|C′7|2

] (6.10)
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and

A
(5)
T

∣∣∣
10′

=

∣∣∣−(CSM10 )2 + |C′10|2 + (FCSM7 + CSM9 )2
∣∣∣

2
[
(CSM10 )2 + |C′10|2 + (FCSM7 + CSM9 )2

] . (6.11)

Equations (6.10) and (6.11) are both free from NP weak-phase dependence. A
(5)
T evaluated

at the q2 value of the AFB zero-point can be computed easily using Eq. (6.11), obtaining

A
(5)
T

∣∣
q20

=
1

2

| − (CSM10 )2 + |C′10|2|
(CSM10 )2 + |C′10|2

, (6.12)

where the choice C′10 = 0 enables us to recover the SM prediction A
(5)
T

∣∣4 GeV2

SM
= 0.5. In

Fig. 16 (left) it can be seen that for |C′10| = 3 the departure of the NP curve obtained from

the SM behaviour is indeed large.

6.3 Analysis of A
(3)
T and A

(4)
T

The observables A
(3)
T and A

(4)
T were first introduced in [6] to test the longitudinal spin

amplitude A0 in a controlled way:

A
(3)
T =

|A0LA
∗
‖L +A∗0RA‖R|√
|A0|2|A⊥|2

, A
(4)
T =

|A0LA
∗
⊥L −A∗0RA⊥R|

|A0LA∗‖L +A∗0RA‖R|
. (6.13)

Unfortunately, the simultaneous appearance of A⊥, A‖ and A0 inside square roots turns

the heavy-quark and large-energy limits into rather awkward expressions, not really useful

to explain the behaviour of these observables at a glance. Therefore, we only outline

their general properties. Equation (6.13) shows that A
(3)
T and A

(4)
T play a complementary

role, as the numerator of A
(3)
T and the denominator of A

(4)
T are the same. Thus, when a

minimum appears in one of them, a maximum is expected in the other observable and the

other way around. This is indeed what can be observed in Fig. 17. For the values of the

Wilson coefficients chosen, NP entering C′10 can easily be distinguished from the SM curve,

displaying a maximum at around 3.5-4 GeV2 (exactly in the energy region where A
(4)
T

is showing a minimum), while CNP
10 can only be clearly identified using A

(4)
T . Something

similar happens with NP entering CSM7 and C′7: the model-independent values chosen for

these Wilson coefficients do not give rise to clear NP signals from A
(3)
T , but they can be

easily told apart using A
(4)
T . In those situations where the origin of the NP curve can not

be clearly established using a single observable (for instance, the c curve in the A
(4)
T plot

of Fig. 17 is very similar to the CNP
10 curve), the combined use of A

(2)
T , A

(3)
T , A

(4)
T , A

(5)
T and

maybe AFB enables us to identify which Wilson coefficient(s) has a contribution from NP.

7. Conclusion

In this paper we have presented how the decay Bd → K∗0`+`− can provide detailed knowl-

edge of NP effects in the flavour sector. We developed a method for constructing observables

with specific sensitivity to some types of NP while, at the same time, keeping theoretical
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Figure 17: A
(3)
T and A

(4)
T in the SM and with NP in and CNP

10 = 1.5ei
π
8 and C′

10 = 3ei
π
8 (left) and

in both C7 and C′

7 Wilson coefficients (right). The cyan line (curve a) corresponds to (CNP
7 , C′

7) =

(0.26e−i
7π
16 , 0.2eiπ), the brown line (curve b) to (0.07ei

3π
5 , 0.3ei

3π
5 ) and the magenta line (curve c)

to (0.18e−i
π
2 , 0). The bands symbolise the theoretical uncertainty as described in Fig. 14.

errors from form factors under control. A method based on infinitesimal symmetries was

presented which allows in a generic way to identify if an arbitrary combination of spin

amplitudes is an observable of the angular distribution. For the case of massless leptons we

identified the explicit form of all four symmetries present. We showed the possible impact

of the unknown Λ/mb corrections on the NP sensitivity of the various angular observables

in a systematic way using an ensemble method. Experimental sensitivity to the observables

was evaluated for datasets corresponding to 10 fb−1 of data at LHCb. Using these tools,

we did a phenomenological analysis for both CP -conserving and CP -violating observables.

The conclusion from this is that the CP -violating observables have very poor experimental

sensitivity while the CP -conserving observables A
(i)
T (with i = 2, 3, 4) are very powerful for

finding NP, including situations with large weak phases.
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Universitat Autònoma de Barcelona, UE and WR from the Science and Technology Facili-

ties Council (STFC), and TH from the European network Heptools. TH thanks the CERN

theory group for its hospitality during his visits to CERN.

– 31 –



A. Kinematics

Assuming the K∗0 to be on the mass shell, the decay Bd → K∗0`+`− is completely de-

scribed by four independent kinematic variables; namely, the square of the lepton-pair

invariant mass, q2, and the three angles θl, θK and φ. The sign of the angles for the Bd

decay shows great variation in the literature. Therefore we present here an explicit defi-

nition of our conventions and point out where the same or different definitions have been

used.

First we consider the Bd → K∗0`+`− decay. The angle θl is the angle between the µ+

momentum in the rest frame of the dimuon and the direction of the dimuon in the rest

frame of the Bd. The θK angle is in a similar way the angle between the K− momentum

in the K∗0 rest frame and the direction of the K∗0 in the rest frame of the Bd.

Let us for Bd → K∗0`+`− define the momentum vectors

~P`+`− = ~p`+ + ~p`− , (A.1)

~Q`+`− = ~p`+ − ~p`− , (A.2)

~PK−π+ = ~pK− + ~pπ+ , (A.3)

~QK−π+ = ~pK− − ~pπ+ . (A.4)

In the dimuon rest frame, we have that the `+ momentum is parallel to ~Q`+`− and also

that ~PK−π+ points in the opposite direction of the dimuon in the Bd rest frame. Thus we

can compute the θl angle as

cos θl = −
~Q```+`− · ~P

``
K−π+

| ~Q``
`+`− ||~P

``
K−π+ |

, (A.5)

where the superscript is used to indicate the frame. In a similar way we have in the K∗0

rest frame

cos θK = −
~QK

∗

K−π+ · ~PK
∗

`+`−

| ~QK∗
K−π+ ||~PK

∗
`+`− |

. (A.6)

Finally, if we go to the rest frame of the Bd, we have φ as the signed angle between

the planes defined by the two muons and the K∗0 decay products respectively. Vectors

perpendicular to the decay planes are

~N`+`− = ~PB`+`− × ~QB`+`− ,
~NK−π+ = ~PBK−π+ × ~QBK−π+ , (A.7)

which lets us define φ from

cosφ = −
~N`+`− · ~NK−π+

| ~N`+`− || ~NK−π+ |
, sinφ =

(
~N`+`− × ~NK−π+

| ~N`+`− || ~NK−π+ |

)
·
~PB`+`−

|~PB
`+`− |

. (A.8)

The angles are defined in the intervals

−1 6 cos θl 6 1 , −1 6 cos θK 6 1 , −π 6 φ < π . (A.9)
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The definition given here is identical to [6] but is different to [7]. However, the two defini-

tions result in the same signs for all the coefficients Ji in Eq. (2.4).

Now for the Bd → K∗0`+`− decay the θl angle is still specified with respect to the `+

while for θK the angle is for the K+. This is equivalent to what is done in [7]. As the θl
angle does not change the sign of the lepton, we have

J̄1,2,3,4,7 = J1,2,3,4,7 , J̄5,6,8,9 = −J5,6,8,9 . (A.10)

in the full-angular distribution in the absence of CP violation.

For the experimental papers [1, 2], a definition has been adopted where all angular

distributions have been plotted for the Bd → K∗0`+`− decay, with the Bd → K∗0`+`−

events overlaid assuming CP conservation. In practise this means that Bd → K∗0`+`−

events have the sign of cos θl reversed before plotting. When experiments progress to

measuring the φ angle as well, special care needs to be taken to get the definitions correct.

B. Theoretical input parameters and uncertainties

To compute the soft form factor error bands in Figs. 5 and 6 in a conservative fashion, we

have used, as input data, the values of ξ‖(0) and ξ⊥(0) shown in Table 2. One can notice

that the ξ⊥(0) value is compatible with the data in [7], but for ξ‖(0) we have kept the value

from [14] to allow for a wider uncertainty range.

The q2-dependence of the form factors V , A1 and A2 has been parametrised according

to [28]

F (q2) =
F (0)

1− aF q2/m2
B + bF q4/m4

B

, (B.1)

where F (0), aF and bF are the fit parameters shown in Table 3 of [28]. Substituting the

outcomes of Eq. (B.1) into [14]

ξ⊥(q2)=
mB

mB +mK∗
V (q2) ,

ξ‖(q
2)=

mB +mK∗

2EK∗
A1(q2)− mB −mK∗

2EK∗
A2(q2) , (B.2)

we can obtain both the central value and the associated uncertainty curves for ξ‖(q
2) and

ξ⊥(q2) in the 1-6 GeV2 range.

The next step is to compute the amplitudes, keeping one soft form factor fixed at the

central value and varying the other in the range allowed by its uncertainty. From them, the

observables can be obtained in a straightforward way and the errors added in quadrature.

To generate the theoretical error bands not due to Λ/mb corrections (plotted as the

inner orange strips in the plots of Secs. 5 and 6) we have used the criteria of Beneke et

al. in [13] and added the following uncertainties in quadrature: the renormalisation scale

uncertainty has been found by varying µ between 2.3 and 9.2 GeV (where µ is the scale at

which the Wilson Coefficients, αs and the MS masses are evaluated), the uncertainty in

the ratio mc/mb by varying this quantity between 0.29 and 0.31, and the other parametric
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mB 5279.50± 0.30 MeV λ 0.226± 0.001

mK 896.00± 0.25 MeV A 0.814± 0.022

MW 80.398± 0.025 GeV ρ̄ 0.135± 0.031

MZ 91.1876± 0.0021 GeV η̄ 0.349± 0.017

m̂t(m̂t) 167± 5 GeV Λ
(nf=5)
QCD 220± 40 MeV

m̂b(m̂b) 4.20± 0.04 GeV αs(MZ) 0.1176± 0.0002

m̂c(m̂c) 1.27± 0.02 GeV αem 1/137

fB 200± 25 MeV a1(K∗)⊥, ‖ 0.03± 0.03

fK∗,⊥ 163± 8 MeV a2(K∗)⊥, ‖ 0.08± 0.06

fK∗,‖ 220± 5 MeV

mB ξK∗,‖(0)/(2mK∗) 0.47± 0.09 λB,+(µh) 0.51± 0.12 GeV

ξK∗,⊥(0) 0.266± 0.032 µh 2.2 GeV

Table 2: Summary of input parameters and estimated uncertainties.

uncertainties have been collected into the factor [6]

κ(q2) =
π2fBfK∗,z(µ)

NcmBξz(q2)
with z =⊥, ‖ (B.3)

that determines the relative magnitude of the hard-scattering versus the form factor term

[13], which is uncertain by about ±35%.
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